Читать реферат по математике: "Дискретная задача оптимального управления" Страница 3

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

пересечение этих гиперплоскостей определяет M = mi • m-2 mn узловых точек. Через них проводится регулярное семейство узловых линий xp(г),в = 1, 2,..., M выбранного вида, например, семейство прямых: xp(i) = const, линейных функций: xp(i) = Kii + Ко, парабол: xp(i) = K212 + Kii + Ко, и т. д. В этом случае коэффициенты 1&j1,j2,...j(i) интерполяционного полинома (5) будут либо константами, либо простыми функциями времени.

При постановке рассматриваемой задачи учитывалось только одно фазовое ограничение -- ограничение на левый конец траектории, которое в данном случае представляет собой заданную точку xo(0). Другие фазовые ограничения (или их совокупности) могут быть учтены с помощью известного метода штрафов.

Близость полученного нами приближенного синтеза оптимального управления u(i,x(i)) к строгому оптимуму можно определить с помощью следующей верхней оценки, доставляемой достаточными

N-i

Ј

i=0

+

Найденное управление тем ближе к оптимальному, чем меньше эта оценка. Возможность вычисления оценки—это важное преимущество перед «чистым» методом Беллмана. Она позволяет организовать регулярную процедуру уточнения приближённого решения за счет увеличения числа узлов интерполяции и их расположения в фазовом пространстве, а также дает критерий ее остановки.

Алгоритм описанного метода состоит из следующих этапов:

    в рассматриваемой области задаются узловые линии, и соответствующая конструкция полинома (5); в моменты времени i решается система уравнений (4) с начальными условиями. В результате определяются коэффициенты интерполяционного полинома и приближенный синтез оптимального управления; вычисляется оценка точности приближенного синтеза оптимального управления (6). Если эта оценка неудовлетворительна, то следует повторить шаги 1) и 2) с увеличением числа узловых линий;для найденного синтеза управления и заданных начальных условий решается система

x(i + 1) = /(i,x(i),u(i,x)), i = 0,1,. .., N — 1, x(0) = xo

в направлении от 0 к N. В результате определяются приближённые оптимальные траектория и управление — пара (x(i),u(i)), на которой функционал I достигает приближенного абсолютного минимума в рассматриваемой области.

Разработана также модификация данного метода, основанная на аппроксимации заданного набора узловых значений правой части уравнения Беллмана по методу наименьших квадратов. В этой модификации равенства (4) заменяются минимизацией относительно неизвестных коэффициентов интерполяционного полинома (3) суммы квадратов отклонений этого полинома от соответствующих узловых значений. Преимущество такого подхода в том, что отпадаетнеобходимость строгого согласования конструкции полинома и конфигурации узловых точек, требуется лишь избыточность числа узлов относительно числа неизвестных, чтобы задача аппроксимации имела единственное решение.

4. Метод восстановления функции цены

Здесь рассматривается другой метод приближенного синтеза, основанный на восстановлении так называемой функции цены. Под этим понимается зависимость функционала I(i, x), подсчитанного на некотором семействе решений системы (1), от значений i, x, рассматриваемых как начальные для траекторий этого семейства. Если решения оптимальны, то, как известно, функция цены становится функцией Беллмана, иначе —


Интересная статья: Основы написания курсовой работы