Читать реферат по информатике, вычислительной технике, телекоммуникациям: "Нелинейные САУ" Страница 5
точку — устойчивый фокус. Эта система имеет два аттрактора.
Область притяжения первого аттрактора — фокуса в начале координат, соответствующего регулируемому равновесию, ограничена внутренним неустойчивым предельным циклом. Рис. 3 Фазовые портреты нелинейных систем с предельными циклами: а — в системе один аттрактор — устойчивый предельный цикл, его область притяжения — вся фазовая плоскость, б — система с двумя предельными циклами (устойчивым и неустойчивым) и одним устойчивым фокусом Если возмущения не выводят систему за пределы области, охватываемой внутренним предельным циклом, положение равновесия восстанавливается и система сохраняет устойчивость. Если же система окажется вне внутреннего предельного цикла, она попадает в область притяжения второго аттрактора — внешнего устойчивого предельного цикла, и в системе с течением времени устанавливаются незатухающие колебания, соответствующие внешнему циклу.
На рис.4, а показан аналогичный фазовый портрет для случая, когда положение регулируемого равновесия неустойчиво, и в начале координат располагается неустойчивый фокус. Если начальное состояние этой системы лежит в любой точке фазовой плоскости, лежащей внутри внешнего предельного цикла, то в системе устанавливаются незатухающие колебания, соответствующие единственному аттрактору — внутреннему предельному циклу. Если же начальное состояние окажется вне внешнего предельного цикла, то в системе возникают колебания, амплитуда которых неограниченно растет.
Система может иметь предельные циклы и тогда, когда фазовый портрет содержит более одной особой точки. Пример такого рода показан на рис.4, б. Здесь регулируемое равновесие неустойчиво(в начале координат — неустойчивый фокус), предельному циклу соответствуют устойчивые незатухающие колебания, которые устанавливаются с течением времени, если начальная точка лежит внутри области, выделенной фазовой траекторией, проходящей через вторую особую точку — седло. Эта траектория выделена на рис.4., б жирной линией. Рис.4. Фазовые портреты нелинейных систем, не имеющих устойчивых особых точек: а — система с двумя предельными циклами, из которых только внутренний устойчив, б — система с устойчивым предельным циклом и седлом Если фазовый портрет системы содержит более одной особой точки или если он содержит замкнутые траектории (предельные циклы), то область устойчивости не может охватывать всей фазовой плоскости подобно тому, как это имеет место в линейной системе. В этом случае область устойчивости всегда ограничена предельным циклом или фазовой траекторией, проходящей через особую точку.
Разумеется, фазовый портрет нелинейной системы может и не содержать дополнительных особых точек или замкнутых траекторий. В этом случае область влияния начала координат фазового пространства может охватывать всю фазовую плоскость и, так же, как в линейной системе, устойчивость не зависит от величины начального положения изображающей точки и величины возмущений.
До сих пор рассматривалась система, для описания которой достаточно двух уравнений первого порядка
В большинстве случаев при решении практических задач теории автоматического регулирования приходится иметь дело с уравнениями более высоких порядков.
Если порядок
Похожие работы
| Тема: Нелинейные САУ |
| Предмет/Тип: Математика (Курсовая работа (п)) |
| Тема: Нелинейные САУ |
| Предмет/Тип: Математика (Курсовая работа (т)) |
| Тема: Нелинейные системы автоматического управления |
| Предмет/Тип: Радиоэлектроника (Курсовая работа (п)) |
| Тема: Полупроводниковые нелинейные элементы: полупроводниковые диоды |
| Предмет/Тип: Радиоэлектроника (Реферат) |
| Тема: Нелинейные мыслительные конструкции, токсичные мысли, боевые метафоры |
| Предмет/Тип: Психология (Реферат) |
Интересная статья: Основы написания курсовой работы

(Назад)
(Cкачать работу)