Читать реферат по математике: "Конструктивная математика" Страница 4
предписанием конструктивного процесса. Конструктивная математика принимает здесь важный принцип, называемый принципом конструктивного подбора и позволяющий устанавливать такие факты методом от противного, то есть приводя к нелепости предположение о неограниченной продолжаемости соответствующего конструктивного процесса. Примеры предписаний: (1) написать I; (2) к произвольному слову в алфавите OI приписать справа I; (3) п.1: написать I и перейти к п.2; п.2: стереть I (то есть заменить эту букву пустым словом ) и перейти к п.1; (4) п.1: к произвольному слову в алфавите OI приписать справа I и перейти к п.2; п.2: если обрабатываемое в данный момент слово совпадает с OII, то закончить процесс, в противном случае вернуться к п.1; (5) п.1: написать О и перейти к п.2; п.2: к обрабатываемому в данный момент слову приписать справа I и перейти к п.3; п.3: если получилось совершенное натуральное число, то закончить процесс, в противном случае приписать к обрабатываемому в данный момент слову справа I и перейти к п.2.Предписание «написать I » задает конструктивный процесс, оканчивающийся за один шаг написанием однобуквенного слова I. Процесс выполнения (3) неограниченно продолжаем. В настоящее время неизвестно, заканчивается ли конструктивный процесс, задаваемый (5) в (5) для краткости использовались теории чисел. Несколько особый характер имеют предписания (2) и (4) : их выполнение может начаться с любого слова в указанном алфавите, при этом конструктивный процесс, определяемый(2), всегда заканчивается, в то время как в случае предписания (4) он неограниченно продолжается при некоторых исходных словах. Предписания указанных типов принято называть алгоритмами (в данном контексте речь идет об алгоритмах, оперирующих со словами).
К необходимости рассмотрения алгоритмов приводит конструктивная трактовка экзистенциональных утверждений. Утверждение о существовании конструктивного объекта с данным свойством, то есть утверждение вида х А (х), в соответствии с представлениями о конструктивных объектах как результат конструктивных процессов считается в конструктивной математике установленным в том случае, когда указан потенциально выполнимый конструктивный объект, заканчивающийся построением искомого объекта. Соответственно установление параметрического утверждения существования х у А (х, у) («для всякого х существует у такой, что А (х, у)» ) предполагает указание «общего» конструктивного процесса, начинающегося с произвольного конструктивного объекта х данного исходного типа и заканчивающегося построением искомого у. Другими словами, х у А (х, у) выражает существование алгоритма, находящего у, исходя из х.. Из такой трактовки существования вытекает и конструктивное понимание дизъюнкции: суждение « А или В» считается установленным, только если предъявлен конструктивный процесс, заканчивающийся указанием его верного члена. Дальнейшее разъяснение смысла суждений более сложной структуры и выработки правил обращения с ними, соответствующих исходным конструктивным установкам, составляет задачу конструктивной семантики и конструктивной логики. Приведенная конструктивная трактовка утверждений существования и дизъюнкции существенно отличается от традиционной: в теоретико-множественной математике, например, суждение х А (х)может быть доказано
Похожие работы
Интересная статья: Быстрое написание курсовой работы

(Назад)
(Cкачать работу)