Читать реферат по математике: "Конструктивная математика" Страница 2
- 1
- 2
- 3
- 4
- . . .
- последняя »
употребляется в узком смысле слова для наименования математики, строящейся советским конструктивным направлением.II.ОСНОВНАЯ ЧАСТЬ.
1. ХАРАКТЕРНЫЕ ЧЕРТЫ КОНСТРУКТИВНОЙ МАТЕМАТИКИ.
Конструктивная математика коротко может быть охарактеризована следующими основными чертами:
предметом изучения являются конструктивные процессы возникающие в результате их выполнения конструктивные объекты; рассмотрение конструктивных процессов и объектов производится в рамках абстракции потенциальной осуществимости с полным исключением идеи актуальной бесконечности; интуитивное понятие эффективности связывается с точным понятием алгоритма; используется специальная, учитывающая специфику конструктивных процессов и объектов конструктивная логика.
Понятия конструктивного процесса и объекта являются первоначальными; представления о них имеют своим источником практическую материальную деятельность человека. Примерами конструктивных процессов могут служить сборка часов на конвейере, полная или частичная разборка их в ремонтной мастерской, набор текстов (с корректурами ) в типографии, формирование и расформирование железнодорожных составов и пр. Характерной чертой конструктивных процессов является протекающее по отдельным шагам оперирование в рамках некоторых четко указанных правил с элементарными, заведомо отличимыми друг от друга объектами, считающимися неразложимыми в ходе этих процессов. Возникающее в результате фигуры, составленные из исходных элементарных объектов, и считаются конструктивными объектами. Конструктивная математика не имеет необходимости углубляться в общее понятие конструктивного процесса и объекта, поскольку для ее нужд оказывается вполне достаточным один специальный вид конструктивных объектов – слова в том или ином алфавите.
Построение слов (это понятие также представляется первоначальным) происходит на следующей основе.
Вначале фиксируется некоторый алфавит, то есть список неразложимых, уверенно отличимых друг от друга элементарных знаков (букв). Каждая буква алфавита может копироваться; возникающие в результате последовательных актов такого копирования прямолинейные цепочки знаков считаются словами в исходном алфавите. К словам в данном алфавите удобно отнести также и пустое слово, то есть цепочку, не содержащую ни одного знака. Например, цепочки «аввссд» и «книга» являются словами в русском алфавите. При обращении со словами конструктивная математика – и в этом проявляется ее абстрактный характер – использует абстракции отождествления и потенциальной осуществимости. Первая из них позволяет, отвлекая от различий копий и оригинала, говорить о различных копиях данной буквы и о ней самой, как об отдельной букве. Например, говорят, что в слово «аввссд» три раза входит буква «в» русского алфавита, тогда как в действительности при написании данного слова воспроизводились три различных конкретных копии исходной буквы. Это соглашение естественным образом распространяется на одинаковые по написанию (равные графически) слова. Например, о двух конкретных словах: слове «книга» и слове «книга» говорят как об одном слове. В допущении абстракции отождествления проявляется предполагаемая конструктивной математикой
- 1
- 2
- 3
- 4
- . . .
- последняя »
Похожие работы
Интересная статья: Основы написания курсовой работы

(Назад)
(Cкачать работу)