Читать реферат по математике: "Конструктивная математика" Страница 5

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

приведением к нелепости его отрицания. Такое доказательство обыкновенно не содержит никакого способа построения искомого конструктивного объекта. Конструктивная математика считает, что подобное рассуждение доказывает не  х А (х), а его «двойное отрицание», то есть    х А (х). Последнее суждение рассматривается в конструктивной математике как, вообще говоря, более слабое, чем  х А (х). Таким образом, конструктивная математика не принимает закона снятия двойного отрицания, а, следовательно, и закона исключенного третьего (на отсутствие оснований для принятия последнего указывает и конструктивная трактовка дизъюнкции).

Первоначальные математические структуры – натуральные, целые и рациональные числа – непосредственно могут трактоваться как слова некоторых простых типов в фиксированном алфавите, при этом соответствующие отношения равенства и порядка легко сводятся к графическому совпадению и различию слов. Введение более сложных структур – действительных чисел, функций над ними и т. д. –осуществляется в конструктивной математике на основе понятия алгоритма, играющего в ней примерно такую же роль, какую играет в традиционной математике понятие функции. Считая интуитивные представления об алгоритмах слишком расплывчатыми для таких построений, конструктивная математика делает здесь принципиальный шаг, стандартизируя используемые алгоритмы посредством принятия одного из современных точных определений этого понятия вместе с соответствующей гипотезой типа Чёрча тезиса, принципа нормализации и т.д., утверждающей совпадение оперативных возможностей, доставляемых алгоритмами в интуитивном и точном смысле слова. Фактически наибольшее применение в конструктивной математике получили нормальные алгорифмы Маркова. К необходимости уточнения понятия алгоритма приводит также и конструктивная трактовка существования. Например, отрицание суждения  х  у  (х,у) есть утверждение о невозможности некоторого алгоритма, между тем интуитивные представления, достаточные для опознания в качестве алгоритма того или иного конкретного предписания, в принципе не позволяют получать сколько-нибудь нетривиальные теоремы невозможности. На основе изложенных принципов и опираясь на современную теорию алгоритмов, конструктивная математика строит ряд математических дисциплин, в том числе и конструктивный математический анализ, включая сюда элементы функционального анализа, дефференциальные уравнения, теорию функций комплексного переменного и т.д.. Получаемые таким образом теоретические модели, основанные на более скромной чем обычносистеме абстракций, хотя и уступают традиционным в прозрачности и элегантности, тем не менее, по-видимому, способны обслужить тот же круг приложений.

Имея общий критический источник с интуиционимтической математикой Л.Брауэра и заимствовав из неё ряд конмтрукций и идей, контруктивная математика обнаруживает определённое сходство с последней. Вместе с тем, здесь имеются и принципиальные отличия как общефилософского, так и конкретно математического характера. Прежде всего констуктивная математика не разделяет интуиционизму убеждение е первоначальном характере математической интуиции, считая, что сама эта интуиция формаируется под влиянием практической деятельности


Интересная статья: Основы написания курсовой работы