Читать диплом по математике: "Собственные колебания пластин" Страница 4

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

кореньхарактеристического уравнения (1.3.4), то , т.е.будет решением дифференциального уравнения (1.3.1).

Уравнение (1.3.4) – уравнение 2-ой степени, следовательно, имеет 2 корня. Если все корни различны, то каждый из них соответствует частному решению дифференциального уравнения (1.3.1).

Следовательно, общее решение уравнения (1.3.1) будет

,

где- произвольные постоянные, а- решения характеристического уравнения (1.3.4) [6].

(1.3.5)

Если корни характеристического уравнения комплексные, , то они будут сопряженными, т.к. коэффициенты уравнения действительные числа. В таком случае, общим решением уравнения (1.3.5) будет

.

Если корни характеристического уравнения чисто мнимые, т.е. . Общим решением уравнения (1.3.1) будет

(1.3.6)

.

Если предположить, что характеристическое уравнение имеет равные корни , то одно частное решение будет иметь вид

.

Второе частное решение будет

.

Тогда общее решение уравнения (1.3.1) можно представить в виде

(1.3.7)

.

Глава II Нахождение функции, описывающей собственные колебания мембраны

2.1 Основные определения

В этой главе использованы следующие обозначения

    - частная производная функциипо ; - производная функция одной переменной.

Мембраной называется плоская пластинка, не сопротивляющаяся изгибу и сдвигу. Мы будем рассматривать поперечные колебания мембраны, в которых смещение перпендикулярно к плоскости мембраны. Отклонение точек мембраны от плоскости xOy будем обозначать через функцию , которая зависит от координат точки (x, y) и от времени t. Вывод дифференциальных уравнений задач математической физики сопровождается целым рядом допущений как механических, так и геометрических. Так при выводе уравнения колебания прямоугольной мембраны мы пренебрегли квадратом частных производных

(2.1.1)

.

В результате получается следующее уравнение колебаний прямоугольной мембраны

.

В случае рассмотрения мембраны круглой формы полезно перейти к полярным координатам. Пусть мембрана в состоянии покоя занимает круг радиусас центром в начале координат. Введем полярные координаты , . Уравнение границы круга будет при этом . Отклонение точек мембраны является теперь функцией полярных координатии времени t:

.

Выражение для операторав полярных координатах имеет вид

,

Тогда уравнение колебаний мембраны (2.1.1) перепишется в виде

(2.1.2)

.

В данной главе нам еще понадобится определение ортогональных функций в следующем виде:

Система функцийназывается ортогональной на интервале , если интеграл от произведения любых двух различных функций системы равен нолю:(). Это условие ортогональности отличается от обычного тем, что под интегралом содержится множитель , в таких случаях говорят об ортогональности с весом[1].

2.2 Собственные колебания прямоугольной мембраны

Процесс колебания плоской однородной мембраны описывается уравнением

(2.2.1)

(2.2.1)

Пусть в плоскости (x, y) расположена прямоугольная мембрана со сторонами b1 и b2, закрепленная по краям. Ее колебание вызывается с помощью начального отклонения и начальной скорости.

Для нахождения функции , характеризующей отклонение мембраны от положения равновесия (прогиб), нужно решить


Интересная статья: Быстрое написание курсовой работы