Читать диплом по математике: "Собственные колебания пластин" Страница 2

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

процесса. Дифференциальные уравнения с частными производными имеют, вообще говоря, бесконечное множество решений. Поэтому в том случае, когда физическая задача приводится к уравнению с частными производными, для однозначной характеристики процесса необходимо задать некоторые дополнительные условия.

В случае обыкновенного дифференциального уравнения 2-го порядка частное решение определяется начальными условиями, например, заданием значений функции и ее первой производной при «начальном» значении аргумента. Для уравнения с частными производными возможны различные формы дополнительных условий.

Рассмотрим их для задачи о поперечных колебаниях струны (под струной понимаем тонкую упругую нить). Каждую точку струны длины l можно охарактеризовать значением ее абсциссы x. Для определения положения струны в момент времени t достаточно задать компоненты вектора смещения точки x в момент t. Тогдабудет задавать отклонение струны от оси абсцисс.

(1.1.1)

Если концы струнызакреплены, то должны выполняться граничные условия

, .

Так как процесс колебания струны зависит от ее начальной формы и распределения скоростей, то следует задать начальные условия:

(1.1.2)

,

.

Таким образом, дополнительные условия состоят из граничных и начальных условий, гдеи– заданные функции точки.

(1.1.1)

Если концы струны движутся по заданному закону, то граничные условия (1.1.1) принимают другой вид:

, ,

гдеи- заданные функции времени t.

Возможны и другие типы граничных условий. Рассмотрим, например, задачу о продольных колебаниях пружины, один конец которой закреплен (точка подвеса), а другой конец свободен. Закон движения свободного конца не задан и зачастую является искомой функцией.

В точке подвеса x=0 отклонение

;

на свободном конце x=l натяжение пружины

равно нулю (нет внешних сил), так что математическая формулировка условия свободного конца имеет вид

.

Если конец x=0 движется по определенному закону , а при x=l задана сила , то

.

Типичным является также условие упругого закрепления, скажем для x=l

или ,

при котором конец x=l может перемещаться, но упругая сила закрепления вызывает на этом конце натяжение, стремящееся вернуть сместившийся конец в прежнее положение.

Если точка (система), относительно которой имеет место упругое закрепление, перемещается, и ее отклонение от начального положения задается функцией , то граничное условие принимает вид

.

Условие упругого закрепления при x=0 имеет вид

.

Таким образом, имеют место три основных типа граничных условий, например, при x=0:

    граничные условия 1-го рода- заданный режим, граничное условие 2-го рода- заданная сила, граничное условие 3-го рода- упругое закрепление.

Аналогично задаются граничные условия и на втором конце x=l. Если функция, задаваемая в правой части ( или ), равны нулю, то граничные условия называются однородными [8].

1.2 Метод разделения переменных или метод Фурье

Одним из наиболее распространенных методов решения уравнений с частными производными является метод разделения переменных или метод Фурье.

Пусть требуется найти функцию , удовлетворяющую для t>0 уравнению

(1.2.1)

в области D и дополнительным начальным и


Интересная статья: Основы написания курсовой работы