Читать учебное пособие по математике: "Вычислительная математика" Страница 29
отрезка пополам и методом ложного положения.
Контрольный пример. Найти три корня уравнения x3 + 3x2 – 1 = 0 с точностью = 10-5.
5. Решение нелинейных уравнений методом простых итераций и методом Ньютона.
Контрольный пример. Найти один действительный корень уравнения x = 0.5 с точностью = 10-5.
6. Решение нелинейных уравнений методом простых итераций и методом секущих.
Контрольный пример. Найти один действительный корень уравнения x = 0.5 с точностью = 10-5.
7. Решение нелинейных уравнений методом простых итераций и методом ложного положения.
Контрольный пример. Найти один действительный корень уравнения x = 0.5 с точностью = 10-5.
8. Решение нелинейных уравнений методом секущих и методом Ньютона.
Контрольный пример. Найти три корня уравнения x3 + 3x2 – 3 = 0 с точностью = 10-5.
9. Решение нелинейных уравнений методом Ньютона и методом ложного положения.
Контрольный пример. Найти три корня уравнения x3 + x2 – 10x +8 = 0 с точностью = 10-5.
10. Решение нелинейных уравнений методом секущих и методом ложного положения.
Контрольный пример. Найти три корня уравнения x3 – x2 – 4x +4 = 0 с точностью = 10-5.
Решение систем линейных алгебраических уравнений
11. Решение системы линейных алгебраических уравнений простым методом исключения Гаусса.
Контрольный пример. Решить систему уравнений
2.1x1 – 4.5x2 – 2.0x3= 19.07
3.0x1 + 2.5x2 + 4.3x3 = 3.21
–6.0x1 + 3.5x2 + 2.5x3 = –18.25
12. Решение системы линейных алгебраических уравнений методом исключения Гаусса с выбором главного элемента по столбцу
Контрольный пример. Решить систему уравнений
1.00x1 + 0.42x2 + 0.54x3 + 0.66x4 = 0.3
0.42x1 + 1.00x2 + 0.32x3 + 0.44x4 = 0.5
0.54x1 + 0.32x2 + 1.00x3 + 0.22x4 = 0.7
0.66x1 + 0.22x2 + 1.00x3 – 1.0x4 = 0.9
13. Решение системы линейных алгебраических уравнений методом простых итераций Якоби.
Контрольный пример. Решить систему уравнений с точностью = 10-5.
–3.0x1 + 0.5x2 + 0.5x3 = –56.65
0.5x1 – 6.0x2 + 0.5x3 = –160
0.5x1 + 0.5x2 – 3.0x3 = –210
14. Решение системы линейных алгебраических уравнений методом Зейделя.
Контрольный пример. Решить систему уравнений с точностью = 10-5.
10x1 + 2x2 + x3 = 10
x1 + 10x2 + 2x3 = 12
x1 + x2 + 10x3 = 8
15. Вычисление определителя методом исключения Гаусса.
Контрольный пример. Вычислить определитель
det A = 3.01.5 0.11.0
0.40.54.06.5
0.31.23.00.7
1.82.22.51.4
16. Вычисление обратной матрицы методом исключения Гаусса.
Контрольный пример. Вычислить обратную матрицу A-1 для матрицы
A = 6.43752.1849–3.74741.8822
2.13565.21011.5220–1.1234
–3.73621.49987.64211.2324
1.8666–1.10041.24608.3312
17. Интерполяция функции многочленами Лагранжа.
Контрольный пример. Построить интерполяционный многочлен Лагранжа для функции y = eпо точкам, заданным таблицей
x | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 |
e | 1.0000000 | 0.9394131 | 0.7788008 | 0.7389685 | 0.3678794 |
Оценить погрешность интерполяции на отрезке [0, 1]. Вычислить y(0.4) и y(0.8).
18. Метод наименьших квадратов. Линейная и квадратичная аппроксимация
Численное интегрирование функций одной переменной
Указание. В курсовых работах 19 – 22 необходимо проанализировать предложенные методы
Похожие работы
Интересная статья: Быстрое написание курсовой работы

(Назад)
(Cкачать работу)