Читать учебное пособие по математике: "Линейные уравнения и их свойства" Страница 5

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

2

1

2

3

0

12

-5

-14

10

2

3

1

1

1

2

3

4

1

1

1

4

Тема 3. Случайные события Задача 1. На складе имеется 12 единиц товара, полученных от поставщика №1, 20 единиц - от поставщика №2 и 18 единиц - от поставщика №3. Вся продукция находится в одинаковых упаковках. Вероятность того, что единица товара, полученная от поставщика №1 отличного качества, равна 0,9; от поставщика №2 - 0,6; от поставщика №3 - 0,9. Найти вероятность того, что взятая наудачу единица товара окажется отличного качества.

Решение. Обозначим черезсобытие, состоящее в том, что взятая единица товара окажется отличного качества. Возможны следующие предположения: - взятая единица товара получена от поставщика №1, - от поставщика №2, - от поставщика №3.

Так как всего на складе 50 единиц товара (12+20+18), то вероятность того, что взятая наудачу единица товара получена от поставщика №1 12/50, от поставщика №2 - 20/50, от поставщика №3 -18/50.

Из постановки задачи известна вероятность того, что единица товара окажется отличного качества при условии, что она получена от поставщика №1: , от поставщика №2 -от поставщика №3 -

Искомую вероятность находим по формуле полной вероятности

. Задача 2. Продукция, выпускаемая на предприятии партиями, попадает для проверки ее на стандартность к одному из двух контролеров. Вероятность того, что партия продукции попадет к первому контролеру, равна 0,6, а ко второму - 0,4. Вероятность того, что годная партия будет признана стандартной первым контролером, равна 0,94, а вторым - 0,98. Годная партия при проверке была признана стандартной. Найти вероятность того, что эту партию проверял первый контролер.

Решение. Обозначим черезсобытие, состоящее в том, что годная партия продукции признана стандартной. Можно сделать два предположения:

партию проверил первый контролер (гипотеза В1);

партию проверил второй контролер (гипотеза В2).

Искомую вероятность того, что партию проверил первый контролер, найдем по формуле Бейеса: По условию задачи имеем:

- (вероятность того, что партия попадет к первому контролеру);

- (вероятность того, что партия попадет ко второму контролеру);

- (вероятность того, что годная партия будет признана первым контролером стандартной);

- (вероятность того, что годная партия будет признана вторым контролером стандартной).

Искомая вероятность Задачи для контрольной работы Таблица 4

Номер варианта

Содержание задачи

1

Покупатель может приобрести нужный ему товар в двух магазинах. Вероятности обращения в каждый из двух магазинов зависят от их местоположения и соответственно равны 0,3 и 0,7. Вероятность того, что к приходу покупателя нужный ему товар не будет распродан, равна 0,8 для первого магазина и 0,4 – для второго, Какова вероятность того, что покупатель приобретет нужный ему товар?

2

Два контролера производят оценку качества выпускаемых изделий. Вероятность того, что очередное изделие попадет к первому контролеру, равна 0,55, ко второму контролеру – 0,45.Первый контролер выявляет имеющийся дефект с вероятностью 0,8, а второй –с


Интересная статья: Основы написания курсовой работы