Читать учебное пособие по математике: "Вычислительная математика" Страница 7
полученные по расчетной формуле (2.5). В качестве начального приближения выбрано значение x0 = 1. Таблица 2.2
| n | xn |
| 012345 | 10.84150.88610.87420.87740.8765 |
Критерий окончания выполняется при n = 5, |x5 – x4| < 0.001. Сходимость двусторонняя, качественный характер такой сходимости представлен на рис. 2.4. Приближенное значение корня с требуемой точностью x* 0.8765. 2.5 Метод Ньютона (метод касательных) Метод Ньютона является наиболее эффективным методом решения нелинейных уравнений.
Пусть корень x* [a, b], так, что f(a)f(b) < 0. Предполагаем, что функция f(x) непрерывна на отрезке [a, b] и дважды непрерывно дифференцируема на интервале (a, b). Положим x0 = b. Проведем касательную к графику функции y = f(x) в точке b0 = (x0, f(x0)) (рис. 2.8).
Рис. 2.8 Уравнение касательной будет иметь вид: y – f(x0) = f '(x0)(x – x0).(2.11) Первое пересечение получим, взяв абсциссу точки пересечения этой касательной с осью OX, т. е. положив в (2.11) y = 0, x = x1: x1 = x0 – .(2.12)
Аналогично поступим с точкой B1(x1, f(x1)), затем с точкой B2(x2, f(x2)), и т. д. в результате получим последовательность приближений x1, x2, …, xn , …,причем xn +1 = xn – .(2.13) Формула (2.13) является расчетной формулой метода Ньютона.
Метод Ньютона можно рассматривать как частный случай метода простых итераций, для которого (x) = x - .(2.14) Сходимость метода. Сходимость метода Ньютона устанавливает следующая теорема.
Теорема 2.3. Пусть x* – простой корень уравнения f(x) = 0, и в некоторой окрестности этого корня функция f дважды непрерывно дифференцируема. Тогда найдется такая малая -окрестность корня x*, что при произвольном выборе начального приближения x0 из этой окрестности итерационная последовательность, определенная по формуле (2.13) не выходит за пределы этой окрестности и справедлива оценка: |xn + 1 – x*| C |xn – x*|2, n 0,(2.15) где С = -1. Оценка (2.15) означает, что метод сходится с квадратичной скоростью.
Сходимость метода Ньютона зависит от того, насколько близко к корню выбрано начальное приближение. Неудачный выбор начального приближения может дать расходящуюся последовательность. Полезно иметь в виду следующее достаточное условие сходимости метода. Пусть [a, b] – отрезок, содержащий корень. Если в качестве начального приближения x0 выбрать тот из концов отрезка, для которого f(x)f"(x)0,(2.16) то итерации (2.13) сходятся, причем монотонно. Рис. 2.8 соответствует случаю, когда в качестве начального приближения был выбран правый конец отрезка: x0 = b.
Погрешность метода. Оценка (2.15) является априорной и неудобна для практического использования. На практике удобно пользоваться следующей апостериорной оценкой погрешности: |xn – x*||xn – xn – 1|.(2.17) Критерий окончания. Оценка (2.17) позволяет сформулировать следующий критерий окончания итераций метода Ньютона. При заданной точности > 0 вычисления нужно вести до тех пор, пока не будет выполнено неравенство |xn – xn – 1| < .(2.18) Пример 2.3.
Применим метод Ньютона для вычисления . где a > 0, p – натуральное число. Вычислениеэквивалентно решению уравнения xp = a. Таким образом, нужно найти корень уравнения f(x) = 0, f(x) = xp – a, f '(x) = pxp – 1. Итерационная формула метода (2.13) примет вид: xn +1 = xn –=xn + .(2.19)
Используя формулу (2.19), найдемс точностью = 10-3. xn +1 =xn + . Простой корень уравнения x3 – 7 = 0 расположен на отрезке [1, 2]. Действительно, на концах отрезка [1, 2] функция f(x) = x3 – 7 принимает
Похожие работы
Интересная статья: Быстрое написание курсовой работы

(Назад)
(Cкачать работу)