Читать реферат по математике: "Применение неравенств при решении олимпиадных задач" Страница 3

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

достигается при x=0, n=0 или n=1.

Однако кроме (1) существует и более общее неравенство Бернулли, которое содержит в себе два неравенства:

если n1, то , (2) если 0 0, . Доказать . Решение:

Записываем неравенство Йенсена для f(x)=x2, mi=n. Получаем: , , , что и требовалось доказать.

Неравенство Коши-Буняковского

Задача:

Пусть a+b+c=1. Доказать, что .

Решение:

Из неравенства Коши-Буняковского имеем . А отсюда имеем, что .

Неравенство Коши

Задача:

Пусть a, b, c – положительные числа, сумма которых равна единице. Доказать, что(1+a)(1+b)(1+c) ≥ 8(1-a)(1-b)(1-c). Решение:

Поскольку a+b+c=1, то 1+a= (1-b)+(1- c). Используя неравенство Коши между средним арифметическим и средним геометрическим , получаем. Аналогично ,

. Перемножая все три неравенства, получаем искомое неравенство.

Неравенство Бернулли

Задача:

Решить уравнение. Решение:

К каждому слагаемому левой части уравнения применяем неравенство Бернулли, тогда , причем равенство возможно лишь при , т.е. x=±1. Следовательно, x=±1 – корни уравнения.

Весовое (общее) неравенство Коши

Задача 1:

Для действительных положительных чисел a, b доказать неравенство .

Решение:

По весовому неравенству Коши (), имеем. Для завершения доказательства осталось учесть очевидное неравенство . Равенство достигается при a=b.

Задача 2:

Для произвольных a,b≥0 доказать неравенство(1). Решение:

По весовому неравенству Коши имеем, что . Добавляя к указанному неравенству аналогичное получаем , что и требовалось доказать. Равенство в (1) достигается при a=b.

Понятно, что решение этой задачи состоит из двух ключевых идей. Первая – это неравенство (2). Вторая – переход от неравенства (2) к неравенству (1).

Что касается неравенства (2), то пока ещё не понятно, как можно было «угадать», что для решения задачи надо было использовать неравенство Коши именно с такими весовыми коэффициентами m1=7, m2=4, m3=1.

Покажем, что эти коэффициенты можно найти (именно так они и были найдены) с помощью стандартной процедуры: «метода неопределённых коэффициентов». Неравенство (2) будем искать из таких соображений. Рассмотрим весовое неравенство Коши . (4) Подберём весовые коэффициенты m1, m2, m3 так, чтобы в правой части неравенства (4) получить a3b. Для этого достаточно решить систему (5) Кроме этого, если к (4) добавить аналогичное неравенство (в решении задачи это было неравенство (3)) , (6) то получим . (7) Следовательно, чтобы неравенство (7) совпало с неравенством в задаче, к системе (5) надо прибавить еще два равенства(8) Решая систему (8), имеем m1=7 m3, m2=4 m3. При таком подборе m1 , m2 , m3 неравенство (4) становится неравенством (2), неравенство (6) – неравенством (3), а неравенство (7) – неравенством (1).

Подводя итоги сказанному, мы видим, что для доказательства неравенства типа (1) записываем общее весовое неравенство Коши с неопределенными весовыми коэффициентами, где слева стоят все слагаемые левой части, а справа – одно слагаемое правой части искомого неравенства. Подбираем неопределенные коэффициенты (путем решения соответствующей системы равенств) так, чтобы после симметризации весового неравенства найти решение задачи. 3.3 Сборник задач Упражнение 1. Неравенство Йенсена:

1.Докажите неравенство , (подсказка: ).

2.Докажите неравенство , где .

3.Докажите неравенство , при .

Упражнение 2.


Интересная статья: Быстрое написание курсовой работы