Читать реферат по математике: "Достатні ознаки збіжності рядів з додатніми членами: ознаки порівняння, Даламбера, радикальна та інтегральна ознаки Коші." Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Пошукова робота на тему:

Достатні ознаки збіжності рядів з додатніми членами: ознаки порівняння, Даламбера, радикальна та інтегральна ознаки Коші.

План

    Ознаки порівняння рядів з додатними членамиОзнака ДаламбераРадикальна ознака КошіІнтегральна ознака Коші

13.3. Ознаки порівняння рядів з додатними членами

            Збіжність чи розбіжність знакододатного ряду часто встановлюється шляхом порівняння його з іншим рядом, наперед відомо збіжним або розбіжним. В основі такого порівняння лежать наступні теореми.      

            Нехай задані два ряди з додатними членами

                                                (13.4)

                                                         (13.5)

            Теорема.1 Якщо члени  ряду (13.4) не більші відповідних членів ряду (13.5), тобто , то із збіжності ряду (13.5) випливає збіжність ряду (13.4), а із розбіжності ряду (13.4) випливає розбіжність ряду (13.5).

            Д о в е д е н н я. 1) Нехай ряд (13.5) – збігається. Позначимо частинні суми рядів (13.4) і (13.5)  через і . Оскільки

,

то, очевидно,

            Ряд (13.5) – збігається, тому існує границя  його частинної суми

            Із того, що члени рядів (13.4) і (13.5) додатні, випливає, що  і тоді в силу нерівності            Отже, частинні суми послідовності обмежені. Крім того, послідовність  монотонно зростаюча, а тому вона має скінчену границю при

Отже, ряд (13.4) збігається.

            2) Нехай ряд (13.4) – розбігається. Тоді ряд (13.5) не може збігатися, тому що за доведеною теоремою (п.1) ряд (13.4) повинен збігатися, а це протирічить нашому припущенню.

Приклад.1  Дослідити збіжність ряду             Р о з в ‘ я з о к. Ряд  знакододатний. Для дослідження його на збіжність використаємо ознаку порівняння:

і ряд  збігається ( тут ), а тому за першою ознакою порівняння даний ряд збігається.

           Зауваження. Теорема має місце і у випадку, коли нерівності  виконуються, починаючи з деякого

           Відкинувши перших  членів у рядах (13.4) і (13.5), які не вплинуть на збіжність чи розбіжність даних рядів, одержимо умови даної теореми.

           Теорема 2. Якщо існує границя

                                                 (13.6)

то із збіжності ряду (13.5), при  випливає збіжність ряду (13.4), а із розбіжності ряду (13.4) – розбіжність ряду (13.5) при  

           Д о в е д е н н я. Нехай ряд (13.5) збігається і Взявши довільне як завгодно мале число  за визначенням границі, для

достатньо великих  будемо мати

 , звідки 

Одночасно з рядом (13.5) буде збігатися і ряд одержаний множенням його членів на постійний множник  Звідси, за попередньою теоремою, випливає збіжність ряду (13.4).

           Якщо ряд (13.5) розбігається і то в цьому випадку обернене відношення  має скінченну границю і тоді ряд (13.4) повинен бути розбіжним, інакше, якщо б він збігався, то по доведеному, збігався би і ряд (13.4), що протирічить припущенню.

Приклад 2.  Дослідити збіжнісь ряду Р о з в ‘ я з о к. Нехай   а   Ряд збігається.Оскільки

 то із збіжності ряду  випливає збіжність і ряду

13.4. Ознака Даламбера

           Теорема. Якщо для ряду (13.4) з додатними членами відношення го члена до го при має (скінчену) границю  тобто


Интересная статья: Основы написания курсовой работы