Читать реферат по информатике, вычислительной технике, телекоммуникациям: "Разработка комплекса анализа ошибок в корпоративных информационных системах" Страница 3
- 1
- 2
- 3
- 4
- 5
- . . .
- последняя »
приводящие к ошибкам, могут автоматически выявляться на основе методов ассоциации, широко применяющихся в настоящее время для анализа рыночной корзины (англ. market basket analysis) [5, с. 281]. Автоматически созданные таким образом правила далее могут предоставляться пользователю для утверждения.
Полнота и детализированность данных, принимаемых системой анализа ошибок, сильно влияет на качество принимаемых ей решений. Очевидно, отслеживание записей только наивысшего уровня критичности (“ERROR”) не позволит в полной мере применить методы анализа цепочек событий. Включение наблюдения за наименее критичными записями (“TRACE”) сильно увеличит нагрузку на сеть. Решение этой проблемы заключается в создании “толстого клиента”, когда программным агентом будет осуществляться предварительная фильтрация явно бесполезных записей протоколов.
Очевидно также, что это потребует внедрения средств сетевой синхронизации для поддержании в актуальном состоянии локальных баз знаний агентов. В качестве таких средств могут выступить системы управления конфигурацией (англ. configuration management software). Данный класс систем предназначен для автоматизированного управления настройками рабочих станций, серверов и прочих узлов локальной (как правило, корпоративной) сети. Подобные системы могут быть выполнены в 2-х вариантах:
клиент-серверном, где клиентская часть представляет собой агента, периодически обращающегося к серверу за информацией об обновлениях конфигурации;
децентрализованном, где каждый узел может выступать в виде источника конфигурации.
Большинство популярных систем управления конфигурацией являются кроссплатформен- ными. Примерами систем управления конфигурацией являются Chef, Opsi, Puppet, Smart Frog, Spacewalk.
Текстовые сообщения, поступившие через систему обратной связи программного агента или систему отслеживания ошибок, часто содержат важную информацию для идентификации и анализа ошибки. Вместе с тем автоматический анализ сообщений от пользователей, как правило, затруднён по следующим причинам:
пользователь может дать неправильное или неполное описание ошибки;
отчёты об ошибках, выраженные в текстовом виде, сложно классифицировать.
Первая проблема может частично решаться путём фиксации набора полей, которые должен заполнить пользователь, после чего проверять данные на достаточность и корректность.
Для решения второй проблемы могут применяться различные методы интеллектуального анализа текстов (англ. Text mining)[6], в частности, алгоритмы извлечения информации (англ. Information extraction). Применение подобных технологий, однако, требует проведения специальных исследований по предметной области. В то же время для анализа текстовых пояснений к событиям, автоматически сгенерированных программой-источником ошибки, можно использовать более простые подходы, например, извлечение фрагментов с помощью регулярных выражений.
Повышение безопасности
Распределённый характер информационной системы предъявляет усиленные требования к обеспечению безопасности как системы в целом, так и отдельных её компонентов.
Данные, пересылаемые как внутри рабочей станции (при взаимодействии сокетов), так и по сетевым каналам (например, при отправке сообщений JMS), могут содержать конфиденциальные данные. Необходимо
- 1
- 2
- 3
- 4
- 5
- . . .
- последняя »
Похожие работы
Интересная статья: Основы написания курсовой работы

(Назад)
(Cкачать работу)