Читать реферат по авиации и космонавтике: "Системы стабилизации и ориентации" Страница 4

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

критериев следует считать невозможность получения при этом оценок качества и точности. Пользуясь ими для систем высокой размерности, проектировщик не может дать рекомендаций по выбору параметров, не только обеспечивающих запасы устойчивости, но и удовлетворяющих требованиям к качеству и точности процессов регулирования. Следует отметить, что на устойчивость дискретных нелинейных систем большое влияние оказывает выбор такта квантования.

Частотные критерии устойчивости предполагают использование передаточных функций для описания системы регулирования и справедливы при её полной наблюдаемости и управляемости. Тогда критерий устойчивости по Ляпунову аналогичен критериям Михайлова, Михайлова-Найквиста и D-разбиениям Неймарка. Эти критерии применимы к анализу как непрерывных, так и дискретных систем. Однако в первом случае они базируются на методах s-преобразований, во втором  z-преобразований. Положив s=j или z=ejT0, строятся частотные характеристики, по которым определяются устойчивости систем регулирования по фазам и модулям и с помощью специальных номограмм оценивают показатели качества и характеристики точности. Большим преимуществом частотных критериев устойчивости является возможность их распространение и на многие типы нелинейных систем.

При проектировании систем стабилизации ЛА чаще всего используются алгебраические и частотные критерии, реже корневые.

1.4.1 Корневые критерии заключаются в вычислении корней

характеристического полинома замкнутой системы.

1.4.2 Алгебраические критерии устойчивости не требуют выполнения вычислительной процедуры определения корней характеристического уравнения и при относительно невысоких порядках дифференциальных уравнений (до 15-го) позволяют находить условия устойчивости автономных замкнутых систем. А(s)=ansn + an-1sn-1+ an-2sn-2+…+a0.(1.11) Критерий Гурвица. Корни характеристического уравнения (1.11) n-го порядка будут иметь отрицательные действительные части, если составленный из его коэффициентов аi> 0 определитель(1.12)

и все его диагональные миноры(1.13)

положительны. Критерий Рауса. Зная коэффициенты характеристического уравнения, составляют таблицу Рауса(табл. 1.1). Для того чтобы замкнутая система была устойчива асимптотически, необходимо и достаточно, чтобы все коэффициенты Рауса первого столбца таблицы при аi>0 были положительны, т.е. сi,1>0 (i=1,2,…). Для вычисления элементов табл. 1.1 можно использовать следующие рекуррентные формулы:

для первой строки таблицы(1.14)для второй строки таблицы(1.15)для остальных строк(1.16)

Таблица 1.1

Номерастрок

Номерастолбцов

1

2

3

…….

I

Коэффициентыс четнымииндексами

а0

а2

а4

…….

Коэффициентыс нечетнымииндексами

а1

а3

а5

……..

1

С11

С12

С13

……..

С1i

2

С21

С22

С23

……..

C2i

….

……

…..

…..

…….

……

к

Ск1

Ск2

Ск3

……..

Сiк

Критерий Шур-Кона. Данный критерий позволяет


Интересная статья: Основы написания курсовой работы