Читать реферат по авиации и космонавтике: "Системы стабилизации и ориентации" Страница 2

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

в значительной степени определяется сложностью математического аппарата, используемого при описании объектов и систем автоматического регулирования. Поэтому для облегчения решения задач теории автоматического регулирования имеет смысл создание процедур, реализующих ряд алгоритмов проектирования систем. Они позволяют формировать обобщенные модели элементов в дискретной форме и матрицы передаточных функций; строить амплитудно-фазовые частотные характеристики (в обычном и логарифмическом масштабах) и др.

1 Обзор литературы 1.1 Получение дискретной модели непрерывной системы При проектировании непрерывных, дискретно-непрерывных и дискретных САР необходимо располагать математической моделью элемента (объекта). При высоких порядках моделей удобно пользоваться уравнениями, составленными во временной области и записанными в векторно-матричной форме. Рассмотрим одну из наиболее часто встречающихся форм представления многоконтурных стационарных линейных элементов (объектов). При этом будем считать, что в линейный объект регулирования после ряда преобразований входят лишь две матрицы: А и В. Тогда эту форму представления стационарного объекта можно записать в виде векторно-матричного уравнения ,(1.1) где у и u векторы размерностей (n  1) и (m  1); А и В  матрицы размерности (n n) и (n m).

С целью использования одинаковой формы описания объектов непрерывных, дискретно-непрерывных и дискретных САР пользуются теорией спектрального разложения матриц, которая с помощью специально созданных алгоритмов позволяет получать единые математические модели в дискретной форме. К основному преимуществу такого подхода следует отнести возможность представления моделей с использованием матриц до 5080-го порядков, без существенного понижения точности спектрального разложения матриц.

Рассмотрим алгоритмы, с помощью которых составляются дискретные модели многомерных объектов, описываемых типовым векторно-матричным уравнением (1.1). Аналитическое решение этого уравнения при начальных условиях y(t0) имеет вид

(1.2)

В моменты времени t=кT0иt=(к+1)Т0 состояние объекта ук+1 связано с предыдущим состоянием ук соотношением

(1.3)

где переходная матрица системы уравнений. Математические зависимости для алгоритмов дискретных моделей можно составить с тремя типами экстраполяторов.

Самая простая дискретная модель может быть получена, если положить, что внутри интервала квантования сигнала, и () экстраполируется по одной точкеступеньки со значениями ик , т.е. перед объектом включен экстраполятор нулевого порядка Э0. В этом случае соотношение (1.3) можно представить в видеук+1=Фук+Fик .(1.4) Здесь F=(Ф - I)А-1В  матрица коэффициентов, обеспечивающих передачу сигналов по входам дискретной модели. 1.2 Передаточные функции непрерывных и дискретных систем Под передаточной функцией стационарных элементов понимают отношение изображения выходной величины к изображению функции входной величины, полученные при нулевых начальных условиях. Для многоконтурных стационарных элементов возможно получение матрицы передаточных функций на основе модели системы во временной области в векторно-матричной форме (1.1). Применяя преобразование Лапласа,


Интересная статья: Быстрое написание курсовой работы