Читать реферат по педагогике: "Методика введения понятия производной функции" Страница 1
- 1
- 2
- 3
- . . .
- последняя »
Министерство образования Республики Беларусь
Учреждение образования
"Гомельский государственный университет им. Ф. Скорины"
Математический факультет
Кафедра МПМ Методика введения понятия производной функции
Реферат Исполнитель:
Студентка группы М-33 Бондорчук А.Ю.
Научный руководитель:
Канд. физ-мат. наук, доцент Лебедева М.Т. Гомель 2007
СодержаниеВведение
1. Образовательные цели изучения производной функции
2. Различные подходы к введению понятия производной функции в курсе средней школы
3. Методическая схема изучения производной
4. Изучение приложения производной в курсе школьной математики
Заключение
Литература
ВведениеЦель изучения курса алгебры и начала анализа в 10-11 в.в. систематическое изучение функций как важнейшего математического объекта средствами алгебры и математического анализа, раскрытие политехнического и прикладного значения общих методов математики, связанных с исследованием функций, подготовки необходимого апорта для изучения геометрии и физики.
Курс характеризуется содержательным раскрытием понятий, утверждений и методов, относящихся к началом анализа, выявлением их практической значимости. При изучении вопросов анализа широко используются наглядные соображения: уровень строгости изложения определяется с учётом общеобразовательной направленности изучения начал анализа и согласуется с уровнем строгости приложений изучаемого материала в смежных дисциплинах.
1. Образовательные цели изучения производной функцииПри изучении темы "Производная" проявляются известные трудности, связанные с осуществлением предельных переходов. Важно поэтому придать изложению возможно более наглядный и конкретный характер.
Включённые в курс сведения о пределах имеют вспомогательный характер, они не обходимы для вывода формул производных. Основное внимание должно быть уделено не формальному применению теорем о пределах, а сознательному проведению предельных переходов для приближённого вычисления значений конкретных функций и их приращений. Многочлены невысоких степеней и их частных -наиболее простой объект для иллюстрации идеи предельного перехода.
Определению производной функции как предела разностного отношения предшествует рассмотрению особенностей поведения графиков гладких функций, приводящее к понятию касательной. Производная функции появляется сначала как тангенс угла наклона касательной к оси абсцисс. Тем самым с понятием производной на первом этапе связывается наглядный образ – касательная. Предельные переходы появляются как средство вычисления производной.
При изучении применения производной существенная роль отводится наглядным представлениям о производной. Опора на геометрический и механический смысл делают интуитивно ясными критерии возрастания и убывания функций, признаки максимума минимума.
Решение тестовых задач физического, геометрического и практического содержания с применением производной позволяет учащимся ознакомиться со всеми этапами решения прикладных задач: составление математической модели (перевод задачи на язык функций), решение полученной задачи средствами математического анализа, и наконец, интерпретация полученного решения в терминах исходной
- 1
- 2
- 3
- . . .
- последняя »
Похожие работы
| Тема: Методика обучения учащихся исследованию функций с помощью производной |
| Предмет/Тип: Математика (Курсовая работа (т)) |
| Тема: Применение производной и интеграла для решения уравнений и неравенств |
| Предмет/Тип: Математика (Курсовая работа (п)) |
| Тема: Практическое применение производной |
| Предмет/Тип: Математика (Реферат) |
| Тема: Приложения производной |
| Предмет/Тип: Математика (Реферат) |
| Тема: Приложения производной |
| Предмет/Тип: Математика (Реферат) |
Интересная статья: Быстрое написание курсовой работы

(Назад)
(Cкачать работу)