Читать реферат по математике: "Графики и их функции" Страница 7

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Расстояние r1 = F1M и r2 = F2M называются фокальными радиусами точки М.

Положим r1 + r2 = 2а; (1)

Тогда согласно определению эллипса 2а - величина постоянная, причем 2а>2с, т.е. а>c.

По формуле расстояния между двумя точками находим

r1 = и r2 =

Подставим найденные значения r1 и r2 в равенство (1) получим уравнение эллипса

После несложных преобразований уравнение примет вид

(2)

Уравнение (2) называется каноническим уравнением эллипса.

Исследование:

Координаты точки О(0; 0) не удовлетворяют уравнению (2), поэтому эллипс, определяемый этим уравнением, не проходит через начало координат.

Найдем точки пересечения эллипса с осями координат. Положив в уравнении (2) у = 0, найдем х =  а. Следовательно, эллипс пересекает ось Ох в точках А1(а; 0) и А2(-а; 0). Аналогично получаем точки пересечения эллипса с осью Оу: В1(0; b) и B2(0; - b)

D(y)  [-a; a]

E(y)  [-b; b]

При возрастании х от 0 до а величина у убывает от b до 0, а при возрастании уот 0 до b величина х убывает от а до 0.

Частным случаем эллипса является окружность, где а = b.

Окружность

Как известно, окружностью называют множество всех точек плоскости, одинаково удаленных от данной точки, называемой центром.

Пусть дана окружность радиусом r с центром в точке О1(a; b) (см. приложение 15); требуется составить ее уравнение.

Возьмем на данной окружности произвольную точку М (х; у)

Имеем: О1М = r, т.е. = r

Откуда (х-а) ² + (у - b) ² = r² (1)

Итак, уравнению (1) удовлетворяют координаты произвольной точки окружности. Более того, этому уравнению не удовлетворяют координаты никакой точки, не лежащей на окружности, так как если

О1М< r, то (х-а) ² + (у - b) ² < r²,

и если

О1М> r, то (х-а) ² + (у - b) ² > r².

Следовательно, (1) Есть уравнение окружности радиусом r с центром в точке О1(a; b). Если центр окружности находится на оси Ох, т.е. если b = 0, то уравнение (1) примет вид

(х-а) ² + у² = r²

Если центр окружности находится на оси Ох, т.е. если b = 0, то уравнение (1) примет вид

х² + (у - b) ² = r²

Наконец, если центр окружности находится в начале координат, т.е. если а = b = 0, то уравнение примет (1) вид

х² + у² = r²

Если в уравнении (1) раскрыть скобки, перенести все члены в левую часть и расположить их по степеням х и у, то получим

x² + y² - 2ax - 2by + a² + b² - r² = 0

Отсюда следует, что уравнение окружности является уравнением второй степени относительно переменных х и у, как бы она ни была расположена в плоскости Оху.

В этой главе были рассмотрены основные простейшие функции, кривые второго порядка и тригонометрические функции, так же представлены их графики.

Глава IV. Методы построения графиков функций

Исследование функции дает возможность найти область определения и область изменения функции, области ее убывания или возрастания, асимптоты, интервал знакопостоянства и др. Однако при рассмотрении графиков многих функций часто можно избежать проведения подобного исследования, используя ряд методов, упрощающих аналитическое выражение функции и облегчающих построение графика. Изложению именно таких методов посвящается эта глава, которая может служить практическим руководством при построении многих функций.

4.1 Параллельный перенос

4.1.1 Перенос

Интересная статья: Быстрое написание курсовой работы