Читать реферат по математике: "Принятие решений в условиях неопределенности" Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Принятие решений в условиях неопределенности Часть I. Принятие решений в условиях неопределенности.

Вариант 15.

    ( 0 , 1/2 ) ( 6 , 1/4 ) ( 5 , 1/5 ) ( 2 , 1/20 )

    ( 6 , 1/2 ) ( 2 , 1/4 ) ( 8 , 1/5 ) ( 22 , 1/20 )( 9 , 1/2 ) ( 4 , 1/4 ) ( 3 , 1/8 ) ( 32 , 1/8 )( -6 , 1/2 ) ( -4 , 1/4 ) ( -12 , 1/8 ) ( 10 , 1/8 )

В этих строках опускаем дроби:

( 0 6 5 2 )

( 6 2 8 22)

( 9 4 3 32)

( -6 -4 -12 10) Полученные строки объединяем в матрицу:0652

62822

94332

-6-4-1210рj = ( 1/2 1/41/5 1/20 )Руководитель, менеджер, обязан разрешать проблемы, встающие перед ним, перед коллективом, которым он руководит. Он обязан принимать решения. В теории принятия решений есть специальный термин: ЛПР — Лицо, Принимающее Решения. Ниже по тексту будем использовать этот термин.

Принять решение — это решить некоторую экстремальную задачу, т.е. найти экстремум некоторой функции, которую называют целевой, при некоторых ограничениях. Например, линейное программирование представляет целый класс таких экстремальных задач. Методы теории вероятностей и математической статистики помогают принимать решения в условиях неопределенности.

Не все случайное можно “измерить” вероятностью. Неопределенность — более широкое понятие. Неопределенность того, какой цифрой вверх ляжет игральный кубик, отличается от неопределенности того, каково будет состояние российской экономики через 15 лет. Кратко говоря, уникальные единичные случайные явления связаны с неопределенностью, массовые случайные явления обязательно допускают некоторые закономерности вероятностного характера.

Предположим, что ЛПР рассматривает несколько возможных решений i = 1,..., m. Ситуация не определена, понятно лишь, что наличествует какой-то из вариантов ј = 1,..., n. Если будет принято i-е решение, а ситуация есть j-я, то фирма, возглавляемая ЛПР, получит доход qij. Матрица Q = (qij) называется матрицей последствий (возможных решений). Какое же решение нужно принять ЛПР? В этой ситуации полной неопределенности могут быть высказаны лишь некоторые рекомендации предварительного характера. Они не обязательно будут приняты ЛПР. Многое будет зависеть от его склонности к риску. Но как оценить риск в данной схеме?

Допустим, мы хотим оценить риск, который несет i-е решение. Нам неизвестна реальная ситуация. Но если бы ее знали, то выбрали бы наилучшее решение, т.е. приносящее наибольший доход. Иначе говоря, если ситуация есть j-я, то было бы принято решение, дающее доход qj = max qij. Значит,

i

принимая i-е решение, мы рискуем получить не qj, а только qij, значит, принятие i-го решения несет риск недобрать rij = qj - qij. Матрица R = (rij) называется матрицей рисков.

Пусть матрица последствий есть Q. max06525

Q =6282222

9433232

-6-4-121010Составим матрицу рисков R. Имеем q1 = 5, q2 = 22, q3 = 32,q4 = 10. Следовательно, матрица рисков есть R.90330

R =34010

0250

15102022

Здесь мы впервые встретились с количественной оценкой риска. Несомненно, что риск — одна из важнейших категорий предпринимательской деятельности, неотъемлемая черта этой деятельности. Как известно, предприниматели живут в среднем лучше, чем остальная часть человечества. Это — награда им за риск в один несчастный день оказаться разоренным. Риск — понятие многогранное и мы еще не раз встретимся с ним. Принятие решений в условиях полной неопределенности.

При принятии решений в условиях полной


Интересная статья: Быстрое написание курсовой работы