Читать реферат по математике: "Принятие решений в условиях неопределенности" Страница 2

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

неопределенности некоторыми ориентирами могут служить следующие правила-рекомендации.

Правило Вальда (правило крайнего пессимизма). Рассматривая i-е решение, будем полагать, что на самом деле ситуация складывается самая плохая, т.е. приносящая самый малый доходai = min qij. Но теперь уже выберем решение с наибольшим ai0. Итак, правило Вальда рекомендует принять решение i0 такое, что ai0 = max = max (min qij).min06520

Q =628222

943323

-6-4-1210-12 Так, в вышеуказанном примере имеем a1 = 0, a2 =2, a3 = 3,a4 = -12. Теперь из чисел 0, 2, 3, -12 находим максимальное. Это — 3. Значит, правила Вальда рекомендует принять 3-е решение. Данному правилу следует человек, боящийся риска.

Правило Сэвиджа (правило минимального риска). Данному правилу следует человек, боящийся риска. При применении этого правила анализируется матрица рисков R = (rij). Рассматривая i-е решение, будем полагать, что на самом деле складывается ситуация максимального риска bi = max rij. Но

j

теперь уже выберем решение i0 с наименьшим bi0. Итак, правило Сэвиджа рекомендует принять решение i0 такое, что bi0 = min bi = min (max rij).

i j

max9033030

R =3401010

02505

1510202222 Так, в вышеуказанном примере имеем b1 = 30, b2 =10, b3 = 5, b4 = 22. Теперь из чисел 30, 10, 5, 22 находим минимальное. Это — 5. Значит, правило Сэвиджа рекомендует принять 3-е решение.

Правило “розового оптимизма”. ЛПР считает, что для него сложится самая благоприятная ситуация, т.е. он получит самый большой доход в результате своей деятельности

ci = max qij. Теперь выберем решение i0 с наибольшим ci0. Итак,

j

правило “розового оптимизма рекомендует принять решение i0 такое, что ci0 = max (max qij).

max

06526

Q =6282222

9433232

-6-4-121010 Так, в вышеуказанном примере имеем с1 = 6, с2 = 22, с3 = 32, с4 = 10. Теперь из чисел 6, 22, 32, 10 берем максимальное. Это — 32. Значит, правило “розового оптимизма” рекомендует 3-е решение.

Правило Гурвица (взвешивающее пессимистический и оптимистический подходы к ситуации). Принимается решение i, на котором достигается максимум min qij + (1 - max qijгде0 Значение выбирается из субъективных соображений. Если  приближается к единице, то правило Гурвица приближается к правилу Вальда, при приближениик нулю правило Гурвица приближается к правилу “розового оптимизма”.

Возьмем  = 1/2.

maxmin065260

Q =62822222

94332323

-6-4-121010-12 i1 = ½ * 6 + ( 1- ½ ) * 0 = 3

i2 = ½ * 22 + ( 1 - ½ ) * 2 = 12

i3 = ½ * 32 + ( 1 - ½ ) * 3 = 17.5

i4 = ½ * 10 + ( 1 - ½ ) * ( -12 ) = -1 Итак, мы имеем i1 = 3, i2 = 12, i3 = 17.5, i4 = -1. Теперь из чисел 3, 12, 17.5, -1 берем максимальное. Это — 17.5. Значит, правило Гурвица рекомендует 3-е решение. Принятие решений в условиях частичной неопределенности.

Предположим, что в рассматриваемой схеме известны вероятности pj того, что реальная ситуация развивается по варианту j. Именно такое положение называется частичной неопределенностью. Как здесь принимать решение? Можно выбрать одно из следующих правил.

Правило максимизации среднего ожидаемого дохода. Доход, получаемыйфирмойприреализацииi-горешения,

является случайной величиной Qi с рядом распределения

qi1

.. .

qin

p1

pn

Математическое ожидание MQiи есть средний ожидаемый доход, обозначаемый также Qi. Итак, правило рекомендует принять решение, приносящее максимальный средний ожидаемый доход.

В приведенном


Интересная статья: Основы написания курсовой работы