Читать реферат по информатике, вычислительной технике, телекоммуникациям: "Прогнозирование с учетом фактора старения информации" Страница 14
определить методами математической статистики. Поэтому требуется разработка специальных методов решения задачи сравнения результатов прогнозов по ограниченному набору ретроспекций.
Следует заметить, что выборочные моменты (математическое ожидание, дисперсия и др.) могут быть определены по выборке Zj(j=1, …, k).
Определение закона распределения случайной величины Z и его анализ позволяют дать статистическую и смысловую интерпретацию результатов сравнения прогнозных исследований, определить коэффициент доверия (или построить доверительную область), проверить статистическую гипотезу о непротиворечивости данных прогноза и контрольного значения динамического ряда.
Традиционно для описания подобного рода случайных величин обращаются прежде всего к нормальному (гауссовскому) распределению, которое играет фундаментальную роль в вероятностно-статистических исследованиях.
Традиционная универсальность нормального закона, как было отмечено выше, объясняется, прежде всего, полнотой теоретических исследований, относящихся к нему. При самых широких предположениях суммы случайных величин ведут себя асимптотически нормально (соответствующие условия и составляют содержание так называемой предельной теоремы). Во многих случайных величинах можно видеть суммарный аддитивный эффект большого числа независимых причин и т.д. В силу изложенных обстоятельств этот закон распределения широко используется в качестве модели для различных статистических совокупностей. В тех случаях, когда гипотеза о принадлежности статистической совокупности генеральной нормальной совокупности не подтверждается опытными данными или когда теоретико-вероятностная схематизация вероятностного эксперимента порождает другую модель, представляется целесообразным в силу универсальности нормального закона обратиться к теории суммирования случайного числа нормальных случайных величин.
Теоретической основой процедуры уточнения математической модели формирования закона распределения случайной величины Z является аппарат характеристических функций.
В этом случае функция распределения F(Z) суммы случайного числа n случайных величин Z, на основании мультипликативного свойства характеристических функций определяется характеристической функцией
(2.28)
где характеристическая функция нормальной случайной величины с параметрами m и .
В качестве примера, имеющего прикладное значение в рассматриваемой области, рассмотрим распределение суммы пуассоновского числа нормально распределенных случайных величин. С этой целью составим уравнение
(2.29)
правая часть которого равна эмпирической характеристической функции. Параметры нормального закона распределения m и и закона Пуассона v могут быть определены в результате минимизации невязки или с помощью моментов. Метод моментов применительно к рассматриваемому уравнению заключается в приравнивании некоторого количества выборочных моментов, оцениваемых по правой части уравнения (2.29), к соответствующим теоретическим, определяемым по характеристической функции левой части уравнения в соответствии с зависимостью
(2.30)
Естественно, что число получаемых в этом случае уравнений должно быть равным числу оцениваемых параметров (в
Похожие работы
Интересная статья: Быстрое написание курсовой работы

(Назад)
(Cкачать работу)