Читать реферат по информатике, вычислительной технике, телекоммуникациям: "Прогнозирование с учетом фактора старения информации" Страница 15

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

данном случае трем).

Последовательно дифференцируя характеристические функции по t и приравнивая в полученных производных значения t нулю, можно составить следующую систему уравнений

(2.31)

где Sk-асимметрия закона распределения, равная центральному моменту третьего порядка.

После некоторых алгебраических преобразований из системы уравнений (2.31) можно определить среднее число суммируемых случайных величин (параметр закона Пуассона).

(2.32)

математическое ожидание и среднеквадратическое отклонение суммируемой нормальной случайной величины

и (2.33)

В формулах (2.32) и (2.33) коэффициент вариации Vz определяется по первым двум моментам и

Используя формулу обращения можно получить плотность распределения пуассоновского числа нормальных случайных величин

(2.34)

Очевидно, что плотность распределения (2.34), а точнее параметры v, m и , зависят от объема выборок случайных величин {Zj}, j=1,…,k; j=1, k=1, k-1 и т.д. Последовательно от этапа к этапу анализируя ретроспективную информацию, можно построить семейство плотностей распределения fj(z) (j=k, k-1, …). Задачу отбраковки устаревшей информации в этом случае сводится к решению последовательного ряда задач проверки статистических гипотез о принадлежности контрольного значения параметра Z0 генеральной совокупности, описываемой законом распределения с плотностью (2.34). При этом следует учесть, что в силу проведенной схематизации процесса Z0=0. Тогда, задаваясь уровнем значимости  и учитывая симметричный характер закона распределения (2.34), можно найти такое значение индекса j, при котором выполнилось бы одно из следующих неравенств

(2.35)

где – функция Лапласа.

Справедливость соотношений (2.35) вытекает из очевидной процедуры вычисления функции распределения через плотность (2.34)

(2.36)

Таким образом, задача определения глубины предпрогнозной ретроспекции с учетом старения информации может быть достаточно надежно решена традиционными методами математической статистики с помощью математической модели (распределения сумм пуассоновского числа нормально распределенных случайных величин).

ЗАКЛЮЧЕНИЕ

В данной курсовой работе рассмотрены основные методы прогнозирования экономической среды с учетом фактора старения информации на примере рыночного механизма спрос-предложение.

Проанализировав полученную информацию, можно сделать выводы о том, что для различных наук, отраслей, экономических сфер старение информации понятие растяжимое. Для одних информация, полученная десять лет назад, все еще представляется важной, а для других, неважной является информация, полученная в течении последних суток.

Также для различных отраслей применяют различные методы учета фактора старения информации. С помощью таких методов можно из имеющейся в наличии информации для прогнозирования выжать максимум полезной информации.

Список литературы

    Б.П Ивченко, Л.А. Мартыщенко, И.Б. Иванцов. «Информационная микроэкономика». Часть 1. Методы анализа и прогнозирования, СПб.: «Нордмед-Издат», 1997. – 160 с.Романенко И.В. Социальное и экономическое прогнозирование: Конспект лекций. – СПб.: Издательство Михайлова В.А., 2000 г. – 64 с.Прогнозирование и финансирование экономики в условиях рыночных отношений. – М.: Мысль,


Интересная статья: Основы написания курсовой работы