Читать реферат по информатике, вычислительной технике, телекоммуникациям: "Динамическое программирование и вариационное исчисление" Страница 3
многошаговый, и найдем подходящий способ описания такого процесса. Для того чтобы получить многошаговый процесс, интервал от 0 до tf следует разбить на n последовательных шагов, длительности которых примем равными τ1,τ2,..., τn. Обозначим через tk(k=0,...,n) моменты окончания k-го шага так, что tk+1= tk+τk+1, а через xk - состояние объекта в момент tk: xk=x(c,tk).
Рассмотрим состояние xk+1=x(c,tk+1)=x(c,tk+τk+1). Это выражение в можно представить в виде: xk+1=x[x(c,tk),τk+1]=x(xk,τk+1).
Это соотношение представляет состояние объекта xk+1 как результат преобразования состояния xk на (k+1)-м шаге.
Введем в рассмотрение оператор Т, который будет означать преобразование состояния процесса за один шаг:
Т (xk) = x(xk, τk+1), k = 0,n-1. Тогда получим: xk+1=Т (xk).
Полагая k=0,n-1, можем описать весь динамический процесс в виде последовательности преобразований
x0=c , x1=Т (x0), …, xn=Т (xn-1). 1.2.3. Многошаговый процесс управления
Динамический процесс, описываемый преобразованием xk+1=Т(xk), является неуправляемым. Для получения управляемого многошагового процесса необходимо иметь возможность на каждом шаге осуществлять не одно преобразование Т(хk), а одно из множества преобразований Тi(хk).
Удобно считать, что конкретный вид преобразования будет зависеть от параметра uk, который на k-м шаге может принимать одно из множества значений Uk. Параметр uk будем называть управлением, а множество Uk - пространством допустимых управлений на k-м шаге. Преобразование, осуществляемое на k-м шаге, теперь можно записать в виде
xk+1=Т(xk, uk), ukUk .
Если в этом соотношении положить последовательно tk=0,n-1 и учесть начальное состояние х0, то получим описание всего управляемого многошагового процесса:
xk+1=Т(xk, uk), ukUk , tk=0,n-1, х0=x(0)=c.
Данное соотношение, называемое разностным уравнением объекта управления, аналогично дифференциальному уравнению, дающему описание непрерывного динамического процесса.
2. Оптимальное управление как вариационная задача 2.1. Математическая формулировка задачи оптимального управления Характерной тенденцией в построении современных систем автоматического управления является стремление получать системы, которые в некотором смысле являются наилучшими. При управлении технологическими процессами это стремление выражается в том, чтобы улучать максимальное количество продукции высокого качества при ограниченном использовании ресурсов (сырья, энергии и т.п.). В системах управления кораблями, самолетами, ракетами стремятся минимизировать время, по истечении которого объект выходит в заданную точку или на заданную траекторию при ограничении угла отклонения рулей, количества расходуемого топлива и т. п. В следящих и стабилизирующих системах представляет интерес достижение максимальной точности при наличии всевозможных ограничений, накладываемых на координаты регулируемого объекта, исполнительные элементы и регулятор. Во всех этих примерах задачи управления сводятся к нахождению наилучшего в определенном смысле слова процесса из множества возможных процессов, т.е. относятся к классу динамических задач управления.
Как было показано ранее, математическая формулировка динамических задач оптимального управления сводится к следующему. Имеется объект управления, состояние которого характеризуется многомерной переменной х={х1,…,xn}. Характер процессов в
Похожие работы
| Тема: Динамическое программирование и вариационное исчисление |
| Предмет/Тип: Информатика, ВТ, телекоммуникации (Реферат) |
| Тема: Интегральное исчисление. Исторический очерк. |
| Предмет/Тип: Математика (Реферат) |
| Тема: Исчисление и уплата единого социального налога на предприятии |
| Предмет/Тип: Налоги (Курсовая работа (п)) |
| Тема: Налогообложение операций с ценными бумагами, Исчисление НДФЛ по операциям с ценными бумагами |
| Предмет/Тип: Налоги (Курсовая работа (п)) |
| Тема: Реляционное исчисление |
| Предмет/Тип: Информационные технологии (Курсовая работа (т)) |
Интересная статья: Быстрое написание курсовой работы

(Назад)
(Cкачать работу)