Читать статья по математике: "Проводники в электрическом поле. Электростатический метод изображений" Страница 1
- 1
Проводники в электрическом поле. Электростатический метод изображений.
М.И. Векслер, Г.Г. Зегря
Поле внутри проводника равно нулю, поэтому проводники геометрически ограничивают область, где должны решаться уравнения электростатики. На поверхности проводника φ = const (эквипотенциальность). Это достигается индуцированием зависящей от координаты поверхностной плотности заряда σ. Поле ортогонально к поверхности проводника, но не обязательно однородно. Заряд σ на поверхности связан с полем как σ = ε0E.
Метод изображений состоит в замене системы "заряды + проводящая поверхность" на систему "заряды + изображения". Правила построения изображений обеспечивают эквипотенциальность требуемой поверхности. Для точечного заряда q, расположенного на расстоянии l от плоскости или центра сферы, а также для прямой нити λ, расположенной на расстоянии l от оси цилиндра:
плоскость q → q' = –q, l → l' = l
заземленная сфера q → q' = –qR/l, l → l' = R2/l
цилиндр λ → –λ, l → l' = R2/l
Если сфера не заземлена, то надо еще дополнительно поставить заряд +qR/l в начало координат. Цилиндр и плоскость заземлены по определению (они простираются до бесконечности, где φ = 0).
Основным практическим случаем является проводящая плоскость: например Земля. Он легко обобщается на систему зарядов (нитей, колец и т. д.) - всю ее надо отобразить относительно плоскости.
Задача. Точечный заряд q находится на расстоянии l от проводящей плоскости. Найти плотность индуцированного заряда как функцию расстояния r от проекции заряда на плоскость.
Ответ:
Задача. Бесконечная прямая нить, несущая заряд λ на единицу длины, висит над проводящей плоскостью на расстоянии l от нее. Найти распределение электрического поля и поверхностной плотности индуцированного заряда вблизи плоскости.
Решение: Сначала находим поле одной нити по теореме Гаусса, затем отображаем нить и ищем поле от нити-изображения –λ, далее векторно суммируем эти поля. После этого можно найти σ в любой точке как –ε0· Ewire+image.
Поле одной нити на расстоянии s от нее равно
и направлено от оси нити или к ней. Поэтому поле одной нити в плоскости на расстоянии x от проекции нити на плоскость будет ():
Такое же по абсолютной величине поле создается нитью-изображением. При векторном суммировании полей двух нитей параллельные плоскости компоненты уничтожаются, а перпендикулярные ей - удваиваются:
Соответственно, имеем плотность индуцированного заряда:
Проинтегрировав σ(x) по x от –∞ до +∞, можно убедиться, что суммарный индуцированный заряд на единицу длины проекции нити составляет –λ, как и должно быть.
Задача. Очень длинная равномерно заряженная зарядом λ0 нить расположена по оси z и не доходит до проводящей плоскости xy на расстояние l. Найти поле вблизи плоскости xy как функцию расстояния r от начала координат.
Ответ:
Задача. На расстоянии l от центра заземленной сферы радиуса R
- 1
Похожие работы
| Тема: Проводники в электрическом поле. Электростатический метод изображений |
| Предмет/Тип: Математика (Статья) |
| Тема: Нейроны как проводники электричества. Физиология синапсов |
| Предмет/Тип: Медицина, физкультура, здравоохранение (Реферат) |
| Тема: Проводники и полупроводники |
| Предмет/Тип: Физика (Контрольная работа) |
| Тема: Рецепторный аппарат и афферентные проводники болевой чувствительности |
| Предмет/Тип: Медицина, физкультура, здравоохранение (Реферат) |
| Тема: Нейроны как проводники электричества |
| Предмет/Тип: Биология (Контрольная работа) |
Интересная статья: Быстрое написание курсовой работы

(Назад)
(Cкачать работу)