Читать реферат по математике: "Экстремумы функций многих переменных" Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Министерство общего и высшего образования Российской Федерации

Иркутский Государственный Технический Университет

Кафедра ВЫСШЕЙ МАТЕМАТИКИРеферат

На тему: “Экстремумы функций многих переменных” Выполнил:

Студент группы ТЭ-97-1

Мартынов Ф.О.

Проверила:

Преподаватель кафедры

Седых Е.И. Иркутск 1998

План реферата:

1. Понятие экстремума........................... 2

2. Необходимые условия экстремума.. 3

3. Достаточные условия экстремума... 6

4. Локальные экстремумы.................... 8

5. Условные экстремумы...................... 9

Экстремумы функций многих переменных. Для начала рассмотрим необходимые условия экстремума функции, также определим понятие экстремума. Начнем с понятия экстремума:

Положим, что имеется некоторая функция с двумя переменными

Определение: Точканазывается точкой экстремума (максимума или минимума)

функции , еслиесть соответственно наибольшее или наименьшее значение функции в некоторой окрестности точки.

При этом значение называется экстремальным значением функции (соответственно максимальным или минимальным). Говорят также, что функция имеет в точке экстремум (или достигает в точке экстремума).

Заметим, что в силу определения точка экстремума функции лежит внутри области определения функции, так что функция определена в некоторой (хотя бы и малой) области, содержащей эту точку. Вид поверхностей, изображающих поверхности функций в окрестности точек экстремума показан на рис. 1.

Теперь установим необходимые условия, при которых функция достигает в точке экстремума; для начала будем рассматривать только дифференцируемые функции.

Необходимый признак экстремума: Если в точке дифференцируемая функцияимеет экстремум, то ее частные производные в этой точке равны

нулю:

,.

Доказательство: Допустим, что функция имеет в точке экстремум.

Согласно определению экстремума функция при постоянном , как функция одного достигает экстремума при . Как известно, необходимым условием для этого является обращение в нуль производной от функции при ,

т. е.

.

Аналогично функция при постоянном , как функция одного , достигает экстремума при . Значит,Что и требовалось доказать.

Точка , координаты которой обращают в нуль обе частные производные функции , называется стационарной точкой функции.

Уравнение касательной плоскости к поверхности :

для стационарной точки принимает вид .

Следовательно, необходимое условие достижения дифференцируемой функцией экстремума в точке геометрически выражается в том, что касательная плоскость к поверхности - графику функции в соответствующей ее точке параллельна плоскости независимых переменных.

Для отыскания стационарных точек функции нужно приравнять нулю обе ее частные производные

, .(*)

и решить полученную систему двух уравнений с двумя неизвестными. Пример 1: Найдем стационарные точки функции

Система уравнений (*) имеет вид:

Из второго уравнения следует, что или , или


Интересная статья: Основы написания курсовой работы