Читать реферат по математике: "Исследование функции с помощью производной" Страница 3

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Л.Шварца – И.М.Гельфанд, Г.Е.Шилов и другие.

Краткий обзор развития понятия функции приводит к мысли о том, что эволюция еще далеко не закончена и, вероятно, никогда не закончится, кА никогда не закончится и эволюция математики в целом. Глава II. Основные свойства функции.

2.1. Определение функции и графика функции. Область определения и область значений функции. Нули функции.

Умение изображать геометрически функциональные зависимости, заданные формулами, особенно важно для успешного усвоения курса высшей математики.

Как известно, функциональной зависимостью называют закон, по которому каждому значению величины х из некоторого множества чисел, называемого областью определения функции, ставится в соответствие одно вполне определенное значение величины у; совокупность значений, которые принимает зависимая переменная у, называется областью изменения функции.

Независимую переменную х называют также аргументом функции. Число у, соответствующее числу х, называют значением функции f в точке х и обозначают f(x).

Функцию можно задать тремя способами: аналитический, табличный, графический.

Аналитический – с помощью формул.

Табличный – с помощью таблиц, где можно указать значения функции, однако лишь для конечного набора значений аргумента.

Графический способ задания функции очень удобен: он дает возможность наглядно представить свойства функции.

Графиком функции f называют множество всех точек (х;у) координатной плоскости, где y=f(x), а х «пробегает» всю область определения функции f.

Пример 1. Найти область определения функции y=lg (2x-3)

y=lg(2x-3)

D(y): 2x-3>0

2x>3

x>1,5

Ответ: D(y)=(1,5; +∞ ).

Одним из понятий для исследования функции является нули функции.

Нули функции – это точки, в которых функция принимает значение нуля.

Пример 2. Найти нули функции y=x2-5x.

y=x2-5x

D(y)=R

По определению :

y=0, тогда

x2-5x=0

x(x-5)=0

x=0 или x=5

Ответ: нулями функции являются точки x=0 и х=5.

Пример 3. Найти нули функции y=4x-8

y=4x-8

D(y)=R

По определению:

у=0, тогда

4х-8=0

4x=8

x=2

Ответ: нулями этой функции является точка х=2. 2.2. Виды функций (четные, нечетные, общего вида, периодические функции).

Рассмотрим функции, области определения которых симметричны относительно начала координат, то есть для любого х из области определения число (-х) также принадлежит области определения. Среди таких функций выделяют четные и нечетные.

Определение: Функция f называется четной, если для любого х из ее области определения f(-x)=f(x).

График четной функции симметричен относительно оси ординат.

Пример 4. Определить вид функции y=2cos2x.

y=2cos2x, D(y)=R

y(-x)=2cos2(-x)=-2cos2x=2cos2x=y(x) – четная.

Пример 5. Определить вид функции y=x4-2x2+2.

y=x4-2x2+2, D(y)=R.

y(-x)=(-x)4-2(-x)2+2=x4-2x2+2=y(x) – четная.

Определение: Функция f называется нечетной, если для любого х из ее области определения f(-x)=-f(x).

График нечетной функции симметричен относительно начала координат.

Пример 6. Определить вид функции y=2sin2x.

y=2sin2x, D(y)=R

y(-x)=2sin2(-x)=-2sin2x=-y(x) – нечетная.

Пример 7. Определить вид функции y=3x+1/3x.

y=3x+1/3x

y(-x)=3(-x)+1/3(-x)=-3x-1/3x=-(3x+1/3x)=-y(x) – нечетная. Пример 4.Пример 5.

Определение: Функцию f называют периодической с периодом Т≠ 0, если для


Интересная статья: Быстрое написание курсовой работы