Читать реферат по математике: "Зарождение науки о закономерностях случайных явлении" Страница 2

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

как шестёрки не выпадает ни разу в 5 случаях. Следовательно, вероятность выпадения хотя бы одной шестёрки при четырёх бросаниях равна 671/1296~0,518> 1/2, поэтому при четырёх бросаниях выгодно делать ставку на то, что выпадет хотя бы одни шестёрка. чем на то, что не выпадет ни одной. Повидимому, многие опытные игроки знали, что первая комбинация появляется чаще, чем вторая, и найти партнёра ни такую игру было трудно. Более сложные комбинации возникали, если бросали сразу две кости. Де Мере пытался определить, сколько раз надо бросить пару костей, чтобы вероятность хотя бы одного появления двух шестёрок была больше 1/2. Он подсчитал, что достаточно 24 бросаний. Однако опыт игрока заставил де Мере сомневаться в правильности своих вычислений. Тогда он обратился с этой задачей к математику Блезу Паскалю, который предложил правильное решение. Учёный определил, что при 24 бросаниях пары костей две шестёрки появляются хотя бы раз с вероятностью, меньшей 1/2, а при 25 бросаниях—с вероятностью, большей 1/2.В самом деле, если броситьодин раз пару костей, две шестёрки выпадут с вероятностью 1/36, а не выпадут—с вероятностью 1-1/36=35/36. При n бросаниях пары костей число шансов непоявления пары шестерок равно 35, а общее числоисходов составит 35.Поэтому игрок, делающий ставку на событие А выигрывает примерно а 50,5% игр, а игрок, делающий ставку на событие А —примерно в 49,1% игр. Эта задача кавалера де Мере заставила Паскаля заняться изучением случайных событий. А в переписке Блеза Паскаля и Пьера Ферма впервые стали упоминаться понятия теории вероятностей. Подсчёт всех возможных и благоприятствующих данному событию случаев нередко представляет большие трудности. Вот почему для решения таких задач некоторые игроки обращались к крупным учёным. Рассказывают, что Гюйгенсу был задан такой вопрос: “Если бросить одновременно три игральных кости, то какая сумма очков будет выпадать чаще—11 или 12?” Подсчёт всех различных случаев здесь прост: N=6 =216. Подсчёт же М здесь сложен. Сумма 11 может получиться следующими шестью различными способами: 1+4+6, 1+5+5, 2+3+6, 2+4+5, 3+3+5. 3+4+4. Также шестью различными способами образуется сумма 12: 1+5+6, 2+4+6, 2+5+5, 3+3+6, 3+4+5, 4+4+4. Это обстоятельство наводит на мысль, будто обе суммы должны появляться одинаково часто. Однако это неверно. Уже на практике было замечено, что сумма 11 появляется чаще суммы 12. Дело а том, что вышеуказанные по три числа сами по себе неодинаково часто выпадают. Так, если каждую из трех костей окрасить по-разному, скажем в белый, красный и зелёныйцвет, то становится ясным, что сочетание, а котором имеются три различных слагаемых, например (1+4+6), может получаться шестью различными способами:

1) 1 бел. + 4 красн. + 6 зел.;2) 1 бел. + б красн. + 4 зел.:

3) 4 бел. + 1 красн. + 6 зел.;4) 4 бел. + 6 красн. + 1 зел.;

5) 6 бел. + 1 красн. + 4 зел.;6) б бел. + 4 красн. + 1 зел. Аналогично сочетание с двумя одинаковыми слагаемыми, например (2+5+5), может получиться тремя различными способами, в то время как сочетания с одинаковыми слагаемыми, вроде (4+4+4), получается единственным способом. И вот для 11 очков мы получим, таким образом, не шесть различных способов, а

1*6 + 1*3 + 1*6 + 1*6 + 1*3 + 1*3 = 27.

Для суммы же 12 число различных способов будет:

1*6 + 1*6 + 1*3 + 1*3 + 1*6+ 1 = 25.

Решение порой довольно сложных задач, с которыми обращались заинтересованные лица к Паскалю, Ферма, Гюйгенсу,


Интересная статья: Быстрое написание курсовой работы