Читать реферат по математике: "Неопределенные бинарные квадратичные формы" Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Неопределенные бинарные квадратичные формы

Введение

Основоположником теории квадратичных форм является французский математик Лагранж. Им была доказана конечность числа классов бинарных квадратичных форм заданного дискриминанта.

Начинается арифметическая теория квадратичных форм с утверждения Ферма о существовании простых чисел суммой двух квадратов.

Теория квадратичных форм продолжала развиваться. Гаусс также вводит много новых понятий. Гауссу сумел получить доказательства трудных и глубоких теорем теории чисел.

В данной работе исследуются предварительные общие сведения о бинарных квадратичных формах. Приведено элементарное доказательство известной оценки для числа приведенных неопределенных бинарных квадратичных форм заданного дискриминанта. Здесь рассмотрены периоды неопределенных квадратичных форм, также решены два вопроса о двусторонних формах. Также приведены доказательства, что диагональные формы одного и того же положительного дискриминанта не эквивалентны.

Предварительные сведения о бинарных квадратичных форм

Определим общие понятия и свойства, которые прямым образом касаются бинарных квадратичных форм.

Однородный многочлен второй степени от двух переменных называется бинарной квадратичной формой:

(1)

где —вещественные числа.

Соответственно используемые коэффициенты в данной формуле — являются первым, вторым и третьим коэффициентами .

Для наглядности эту формулу будем обозначать через , получим:В теории форм над кольцами и в первую очередь над кольцом целых чисел более предпочтительной является запись вида (1).

В теории квадратичных форм над полями приведены формы, у которых второй коэффициент без множителя , т. е.: Если в бинарной квадратичной форме (1) коэффициенты являются целыми числами, тогда эту форму называют классической целой или целочисленной по Гауссу.

В данной работе классические квадратичные формы будем называть численными.

Если существует линейная подстановка переменных (2) с целыми коэффициентами и определителем , переводящая форму в форму , такая, что выполняется равенство

, (3),

тогда бинарные целочисленные квадратичные формы и называются собственно эквивалентными.

Иначе, если целочисленная подстановка (2) с определителем переводит форму в форму , бинарные квадратичные формы называются несобственно-эквивалентными.

Полученные эквивалентные формы обозначим следующим образом: ~

Из (2) и (3) вытекают соотношения, связывающие коэффициенты двух эквивалентных форм и .

(4)Эквивалентные бинарные квадратичные формы имеют один и тот же дискриминант, т.е. число бинарной квадратичной формы

Предположим, что собственно или несобственно эквивалентна форме . Значит, опираясь на определение об эквивалентности, можно сказать, что есть такие целые числа с определителем , при которых выполняются соотношения (4). Отсюда следует:Эквивалентные бинарные квадратичные формы представляют одно и то же множество целых чисел.

Допустим, что формы и эквивалентны. Значит, есть унимодулярная целочисленная подстановка переменных:,

тогдаПредположим , значит:

,

Таким образом, форма — это есть число . В связи с тем, что отношение эквивалентности бинарных


Интересная статья: Основы написания курсовой работы