Читать реферат по математике: "Матричные операции в вейвлетном базисе" Страница 3

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

следующим образом:

.(1.11)

Во-вторых, ортогональность {(x-k)}kZ подразумевает, что

(1.12)

и значит

(1.13)

и.(1.14)

Используя (1.9), получаем

(1.15)

и, рассматривая сумму в (1.15) по четным и нечетным индексам, имеем

.(1.16)

Используя 2-периодичность функции m0 и (1.14), после замены /2 на , получаем необходимое условие

(1.17)

для коэффициентов hk в (1.11). Заметив, что

(1.18)

и определив функцию  следующим образом:

,(1.19)

где

,k=0,…,L-1 ,(1.20)

или преобразование Фурье для 

,(1.21)

где

,(1.22)

можно показать,чтоприкаждомфиксированноммасштабеjZвейвлеты

{j,k(x)=2-j/2(2-jx-k)}kZ образуют ортонормальный базис пространства Wj.

Равенство (1.17) определяет пару квадратурных зеркальных фильтров (quadrature mirror filters, QMF) H и G, гдеи . Коэффициенты QMF H и G вычисляются с помощью решения системы алгебраических уравнений. Число L коэффициентов фильтра в (1.11) и (1.22) связано с числом исчезающих моментов М, и всегда четно.

Выбранный фильтр Н полностью определяет функции  и  и, таким образом, многомасштабный анализ. Кроме того, в правильно построенных алгоритмах значения функций  и  почти никогда не вычисляются. Благодаря рекурсивному определению вейвлетного базиса, все операции проводятся с квадратурными зеркальными фильтрами H и G, даже если в них используются величины, связаные с  и .

2. БЫСТРОЕ ВЕЙВЛЕТ-ПРЕОБРАЗОВАНИЕ

После того, как вычислены коэффициенты hk и gk, т.е. выбран определенный вейвлет, можно проводить вейвлет-преобразование сигнала f(x), поскольку задан ортонормальныйбазис (j,k,  j,k).Любаяфункцияf(x)L2(R)полностью характеризуется ее вейвлет-коэффициентами разложения по этому базису и потому может быть представлена формулой

.(2.1)

Зададим все пределы суммирования в формуле (2.1). Функцию f(x) можно рассматривать на любом n-м уровне разрешения jn. Тогда разделение между ее усредненными значениями на этом уровне и флуктуациями вокруг них выглядят как

.(2.4)

На бесконечном интервале первая сумма может быть опущена, и в результате получается «чистое» вейвлет-разложение.

Коэффициенты sj,k и dj,k содердат информацию о составе сигнала на разных масштабах и вычисляются по формулам:

,(2.2)

.(2.3)

Однако при этом компьютерные расчеты занимают довольно длительное время, т.к. при вычислении приходится проводить O(N2) операций, где N – число имеющихся значений функции. Опишем более быстрый алгоритм.

В реальных ситуациях с оцифрованным сигналом мы всегда имеем дело с конечным набором цифр (точек). Поэтому всегда существует наилучший уровень разрешения, когда каждый интервал содержит по одному числу. Соответственно и суммирование по k будет идти в конечных пределах. Удобно изменить шкалу разрешения (или шкалу f), приписав значение j=0 этому наилучшему уровню разрешения. В этом случае легко вычислить вейвлет-коэффициенты для более усредненных уровней j1. Многомасштабный анализ приводит естественным путем к иерархической и быстрой схеме вычисления вейвлет-коэффициентов заданной функции.

В общем случае итерационные формулы быстрого вейвлет-преобразования имеют вид:

,(2.4)

(2.5)

с

.(2.6)

Эти уравнения обеспечивают быстрые (или пирамидальные) алгоритмы вычисления вейвлет-коэффициентов, поскольку требуют только O(N) операций для своего


Интересная статья: Основы написания курсовой работы