Читать реферат по математике: "Матричные операции в вейвлетном базисе" Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Белорусский государственный университет

Факультет прикладной математики и информатики

Кафедра математической физики

ГРОМОВА МАРИЯ МИХАЙЛОВНА

МАТРИЧНЫЕ ОПЕРАЦИИ В ВЕЙВЛЕТНОМ БАЗИСЕ

Курсовая работа студентки 3 курса

Научный руководитель:

Глушцов Анатолий Ильич

кафедры МФ

кандидит физ.-мат. наук

Минск 2003СОДЕРЖАНИЕ

ВВЕДЕНИЕ………..………………………………………………………..3

    МНОГОМАСШТАБНЫЙ АНАЛИЗ И ВЕЙВЛЕТЫ………………...5 БЫСТРОЕ ВЕЙВЛЕТ-ПРЕОБРАЗОВАНИЕ….……………………...9 ДВУМЕРНЫЕ ВЕЙВЛЕТЫ…………………………………………..12 МАТРИЧНЫЕ ОПЕРАЦИИ………………………………………….13

4.1. Матричное умножение………………………………………...13

4.2. Обращение матрицы…………………………………………...16

4.3. Вычисление экспоненты, синуса и косинуса от матрицы.….16

ЛИТЕРАТУРА……………………………………………………………18

ВВЕДЕНИЕ

Вейвлет-преобразование сигналов (wavelet transform), теория которого оформилась в начале 90-х годов, является не менее общим по областям своих применений, чем классическое преобразование Фурье. Принцип ортогонального разложения по компактным волнам состоит в возможности независимого анализа функции на разных масштабах ее изменения. Вейвлет-представление сигналов (функций времени) является промежуточным между полностью спектральным и полностью временным представлениями.

Компактные волны относительно независимо были предложены в квантовой физике, физике электромагнитных явлений, математике, электронике и сейсмогеологии. Междисциплинарные исследования привели к новым приложениям данных методов, в частности, в сжатии образов для архивов и телекоммуникаций, в исследованиях турбулентности, в физиологии зрительной системы, в анализе радарных сигналов и предсказании землетрясений. К сожалению, объем русскоязычной научной литературы по тематике вейвлет-преобразований (да и нейронных сетей) относительно невелик.

Базовая идея восходит к временам 200-летней давности и принадлежит Фурье: аппроксимировать сложную функцию взвешенной суммой простых функций, каждая из которых, в свою очередь, получается из одной функции-прототипа. Эта функция-прототип выполняет роль строительного блока, а искомая аппроксимация получается комбинированием одинаковых по структуре блоков. При этом, если "хорошая" аппроксимация получается при использовании небольшого числа блоков, то тем самым достигается значительное уплотнение информации. В качестве таких блоков Фурье использовал синусоиды с различными периодами.

Что прежде всего отличает вейвлет-анализ от анализа Фурье? Основным недостатком Фурье-преобразования является его "глобальная" чувствительность к "локальным" скачкам и пикам функции. При этом модификация коэффициентов Фурье (например, обрезание высоких гармоник с целью фильтрации шума) вносит одинаковые изменения в поведение сигнала на всей области определения. Это особенность оказывается полезной для стационарных сигналов, свойства которых в целом мало меняются со временем.

При исследовании же нестационарных сигналов требуется использование некоторых локализованных во времени компактных волн,


Интересная статья: Основы написания курсовой работы