Читать реферат по информатике, вычислительной технике, телекоммуникациям: "Нахождение корней уравнения методом простой итерации (ЛИСП-реализация)" Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

СОДЕРЖАНИЕ Введение

1. Постановка задачи

2. Математические и алгоритмические основы решения задачи

2.1 Описание метода

2.2 Геометрическая интерпретация

3. Функциональные модели и блок-схемы решения задачи

4. Программная реализация решения задачи

5. Пример выполнения программы

Заключение

Список использованных источников и литературы ВВЕДЕНИЕ Методы решения линейных и квадратных уравнений были известны еще древним грекам. Решение уравнений третьей и четвертой степеней были получены усилиями итальянских математиков Ш. Ферро, Н. Тартальи, Дж. Картано, Л. Феррари в эпоху Возрождения. Затем наступила пора поиска формул для нахождения корней уравнений пятой и более высоких степеней. Настойчивые, но безрезультатные попытки продолжались около 300 лет и завершились благодаря работам норвежского математика Н. Абеля. Он доказал, что общее уравне6ие пятой и более высоких степеней неразрешимы в радикалах. Решение общего уравнения n-ой степени a0xn+a1xn-1+…+an-1x+an=0, a00 при n5 нельзя выразить через коэффициенты с помощью действий сложения, вычитания, умножения, деления, возведения в степень и извлечения корня.

Для неалгебраических уравнений типа х–cos(x)=0 задача еще более усложняется. В этом случае найти для корней явные выражения, за редким случаем не удается.

В условиях, когда формулы "не работают", когда рассчитывать на них можно только в самых простейших случаях, особое значение приобретают универсальные вычислительные алгоритмы. Известен целый ряд алгоритмов, позволяющих решить рассматриваемую задачу.

Если записать уравнение в виде f(x) =0, то для применения этих алгоритмов нет необходимости накладывать какие-либо ограничения на функцию f(x), а предполагается только что она обладает некоторыми свойствами типа непрерывности, дифференцируемости и т.д.

Это итерационный численный метод нахождения корня (нуля) заданной функции.

Целью данной курсовой работы является Лисп – реализация нахождения корней уравнения методом простой итерации. 1. Постановка задачи Дано уравнение: . Требуется решить это уравнение, точнее, найти один из его корней (предполагается, что корень существует). Предполагается, что F(X) непрерывна на отрезке [A;B].

Входным параметром алгоритма, кроме функции F(X), является также начальное приближение - некоторое X0, от которого алгоритм начинает идти.

Пример.

Найдем корень уравнения . Рисунок 1. ФункцияБудем искать простой корень уравнения, находящийся на отрезке локализации [-0.4,0].

Приведем уравнение к виду x=(x), где . Проверим условие сходимости: . Рисунок 2. График производной Максимальное по модулю значение производной итерационной функции достигается в левом конце отрезка .

. Выполним 3 итерации по расчетной формуле x= (x),

1 итерация .

2 итерация .

3 итерация .

2. Математические и алгоритмические основы решения задачи 2.1 Описание метода простых итераций Рассмотрим уравнение f(x)=0 (2.1) с отделенным корнем X[a, b]. Для решения уравнения (2.1) методом простой итерации приведем его к равносильному виду: x=φ(x). (2.2) Это всегда можно сделать, причем многими способами. Например: x=g(x) · f(x) + x ≡ φ(x), где g(x) - произвольная непрерывная функция, не имеющая корней на отрезке [a,b].

Пусть x(0) - полученное каким-либо способом приближение к корню x (в простейшем случае


Похожие работы

 
Тема: Нахождение корней уравнения методом простой итерации (ЛИСП-реализация)
Предмет/Тип: Другое (Реферат)
 
Тема: НАХОЖДЕНИЕ ВСЕХ ДЕЙСТВИТЕЛЬНЫХ КОРНЕЙ АЛГЕБРАИЧЕСКОГО МНОГОЧЛЕНА МЕТОДОМ ДЕЛЕНИЯ ОТРЕЗКА ПОПОЛАМ (БИСЕКЦИИ) И МЕТОДОМ ХОРД И КАСАТЕЛЬНЫХ С УКАЗАННОЙ ТОЧНОСТЬЮ И УЧЕТОМ ВОЗМОЖНОЙ КРАТНОСТИ КОРНЕЙ
Предмет/Тип: Математика (Курсовая работа (п))
 
Тема: НАХОЖДЕНИЕ ВСЕХ ДЕЙСТВИТЕЛЬНЫХ КОРНЕЙ АЛГЕБРАИЧЕСКОГО МНОГОЧЛЕНА МЕТОДОМ ДЕЛЕНИЯ ОТРЕЗКА ПОПОЛАМ (БИСЕКЦИИ) И МЕТОДОМ ХОРД И КАСАТЕЛЬНЫХ С УКАЗАННОЙ ТОЧНОСТЬЮ И УЧЕТОМ ВОЗМОЖНОЙ КРАТНОСТИ КОРНЕЙ
Предмет/Тип: Математика (Реферат)
 
Тема: НАХОЖДЕНИЕ ВСЕХ ДЕЙСТВИТЕЛЬНЫХ КОРНЕЙ АЛГЕБРАИЧЕСКОГО МНОГОЧЛЕНА МЕТОДОМ ДЕЛЕНИЯ ОТРЕЗКА ПОПОЛАМ (БИСЕКЦИИ) И МЕТОДОМ ХОРД И КАСАТЕЛЬНЫХ С УКАЗАННОЙ ТОЧНОСТЬЮ И УЧЕТОМ ВОЗМОЖНОЙ КРАТНОСТИ КОРНЕЙ
Предмет/Тип: Математика (Реферат)
 
Тема: Отделение корней. Графический и аналитический методы отделения корней
Предмет/Тип: Информатика, ВТ, телекоммуникации (Реферат)

Интересная статья: Основы написания курсовой работы