Читать реферат по математике: "Уравнения. Системы уравнений. Графики функции" Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Глава 1. Уравнения. Системы уравнений 1. Линейные уравнения

    Уравнение первой степени вида , называется линейным уравнением. Где - переменные, числаистоящие перед переменными называются коэффициентами, а и- свободные члены. Запишем линейное уравнение

(1)

Для решения уравнения (1) перенесем переменные содержащие коэффициенты, в левую часть уравнения с положительным знаком, а свободные члены в правую часть уравнения с отрицательным знаком, получим уравнение вида

(2)

Пусть , а , тогда уравнение (2) будет иметь вид

(3)

Примеры.

1) Решить уравнение

Перенесем неизвестные с коэффициентами в левую часть уравнения, а свободные члены в правую часть, получим: Используя уравнение (3) получим:

Ответ:

2) Решить уравнение

Видно, что в этом уравнении есть один отрицательный свободный член – 4. Но, перенося его в правую часть уравнения еще с одним отрицательным знаком, получим , тогда

Отсюда:

Ответ:

3) Решить уравнение

В этом уравнении один коэффициент отрицательный, перенося его и еще с положительным знаком в левую часть нет смысла, т.к. , тогда:

Отсюда:

Ответ:

4)

Используя объяснения к уравнению 2), получим

Отсюда:

Ответ:

5)

Используя объяснения, приведенные к уравнениям 1), 2), 3), 4), получим

Отсюда:

Ответ:

    Пусть дано линейное уравнение вида

(4)

В отличие от уравнения (1) переменные, содержащие коэффициенты, переносятся в левую часть с отрицательным знаком, в правую часть свободные члены переносятся тоже со знаком отрицательным. Но свободный членв уравнении (4) и так стоит в правой части, поэтому он не будет менять знак, поменяет знак только член . И так, решим уравнение (4).

Перенесем переменные с коэффициентами в левую часть с отрицательным знаком, а членв правую часть тоже с отрицательным знаком, получим

(5)

Отсюда:

Если , то

Решение уравнения (4) можно записать в виде системы:

(6)

Пример. Решить уравнение

Перенесем неизвестные с коэффициентами в левую часть с отрицательным знаком, а членв правую часть со знаком «минус», тогда

Отсюда:

Ответ:

    Линейное уравнение с двумя переменными имеет вид:

(7)

Для решения уравнения (7) выразим переменнуючерез переменную , т.е. получим уравнение вида

(8)

Для нахождения решения уравнения (7) в уравнении (8) выбирается произвольное (любое) значение . Таким образом, уравнение (7) обладает множеством решений.

Пример. Решить уравнение

Воспользуемся формулой (8), тогда

Теперь выберем абсолютно любое значение икса, например, при, получим:

Ответ:2. Квадратные уравнения Уравнение второй степени виданазывается квадратным. Для решения такого уравнения воспользуемся следующими формулами:

и(9)

Гдеи- корни квадратного уравнения

Пусть , тогда если , то можно записать:

(10)

Если , то уравнение не имеет решений.

Пример. Решить уравнение

Пользуясь формулами (9) получим:

Ответ:и

3. Уравнение третей степени Уравнение третей степени виданазывается кубичным уравнением. Для решения такого уравнения заменим неизвестное -на коэффициенти вводя подстановку .

Получим более


Интересная статья: Основы написания курсовой работы