Читать реферат по математике: "Уравнения. Системы уравнений. Графики функции" Страница 2

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

упрощенное уравнение третей степени:

(11)

Поскольку уравнение в третей степени, то соответственно решениями этого уравнения будут три корня, которые сейчас определим из следующей системы

(12)

Корни - есть решения уравнения, где- комплексное число. 4. Уравнения высших степеней сводящиеся к квадратным 1.Рассмотрим уравнение, у которого одна переменная находится в четвертой степени, т.е. дано уравнение вида:

(13)

Для решения такого уравнения, выразим через , получим,

(14)

Решая это уравнение по следующим формулам, имеем:

и(15)

Пример. Решить уравнение.

Выразим через , получим , решая это уравнение по формулам (19) получим

Отсюда получаем множество корней (решений)

Ответ: .

2. Рассмотрим уравнение, у которого одна степень находится в пятой степени, т.е. имеется уравнение вида

(16)

Для решения такого уравнения выберем переменную, у которой степень самая меньшая, по сравнению с другими степенями, это будет переменная , вынося ее за скобку получим:

(17)

Отсюда , т.е. мы получили некоторое множество нулей. Уравнение , решается через дискриминант.

Пример. Решить уравнение

Вынесемза скобку, получим , отсюда , который имеет множество корней (0; 0; 0). Далее, решая уравнение,получими . Таким образом, получили множество решений (0; 0; 0; -2; ).5. Системы уравнений Пусть дана система уравнений

(18)

где- коэффициенты при неизвестныхи ,и- свободные члены.

Система (18) решается тремя способами 1) Графический способ; 2) Способ подстановки; 3) Способ сложения. Первый способ рассматривать не будем. Остальные способы рассмотрим при решении следующих систем уравнений.

    Способ подстановки.

Возьмем первое уравнение системыи из этого уравнения выразим через , получим:

Подставив это выражение во второе уравнение системы, получим

Отсюда,

Запишем последнее уравнение и решим его:

Подставив теперь найденное значениев выражение, стоящее выше, получим:

Ответ:и

    Способ сложения.

Умножим первое и второе уравнения система на 2, получим:

Затем, сложив почленно уравнения системы, получим . Найдем значения игрека, для этого найденное значение икса подставим в любое уравнение исходной (первоначальной) системы, получим:

    Способ сложения.

Запишем систему

Умножим первое уравнение на 2, а второе на 2, получим:

Сложим 6x и 8x, получим 14x и 12+6=18, отсюда . Подставив теперь значение x в любое уравнение системы, получим:

Ответ:7. Система трех уравнений с тремя переменными(19)

где - коэффициенты при неизвестных ,- свободные члены.

Для решения системы (19) составим определитель(20)

Первое число у индекса указывает число (номер) строки, второе число – номер столбца. Сам определитель обозначается буквой d.

Для вычисления определителя пользуются правилом Крамера, т.е.:

d==

Корни системы (24) находятся по формулам:

Где- числа, которые следует определить по следующему правилу:

Таким же методом определяются остальные определители

ГЛАВА 2. ГРАФИК ФУНКЦИИ 1. График функции

Функцияназывается линейной функцией. Для нахождения точек пересечения графика функции нужно решить два уравнения:


Похожие работы

 
Тема: Нахождение корня нелинейного уравнения. Методы решения системы нелинейных уравнений
Предмет/Тип: Математика (Практическое задание)
 
Тема: Квадратные уравнения и уравнения высших порядков
Предмет/Тип: Математика (Реферат)
 
Тема: Численные методы решения нелинейных уравнений, используемые в прикладных задачах. Нахождение корня уравнения методом дихотомии и методом хорд
Предмет/Тип: Отсутствует (Курсовая работа (т))
 
Тема: Численные методы решения нелинейных уравнений, используемые в прикладных задачах. Нахождение корня уравнения методом простой итерации и методом касательных
Предмет/Тип: Отсутствует (Курсовая работа (т))
 
Тема: Численные методы решения нелинейных уравнений, используемые в прикладных задачах. Нахождение корня уравнения методом простой итерации и методом хорд
Предмет/Тип: Отсутствует (Курсовая работа (т))

Интересная статья: Основы написания курсовой работы