Читать реферат по математике: "Операторы в вейвлетном базисе" Страница 4
4.2 Оператор dn/dxn в вейвлетном базисеТак же как и для оператора d/dx, нестандартная форма оператора dn/dxn полностью определяется своим отображением на подпространство V0, т.е. коэффициентами
,l Z,(4.18)
если интеграл существует.
Предложение 4.2. 1. Если интеграл в выражении (4.18) существует, тогда коэффициенты , l Z удовлетворяют следующей системе линейных алгебраических уравнений
(4.19)
(4.20)
гдедано в формуле (4.17).
2. Пусть M ≥ (n+1)/2, где М – число исчезающих моментов. Если интеграл в (4.18) существует, тогда система (4.19)-(4.20) имеет единственное решение с конечным числом нулевых коэффициентов , а именно для . Также для четных n
(4.21)
(4.22)
(4.23)
а для нечетных n
(4.24)
(4.25)
Замечание 3. Если M ≥ (n+1)/2, тогда решение линейной системы в Предложении 2 может существовать, когда интеграл в (4.18) не является абсолютно сходящимся.
Интегральные уравнения второго рода
Линейное интегральное уравнение Фредгольма есть выражение вида
,
где ядро , а неизвестная функция f(x) и функция в правой части , . Для простоты будем рассматривать интервал и введём следующее обозначение для всех и :
Предположим, что {φ1, φ1,…} – ортонормальный базис для ; ядро представимо в этом базисе в следующем виде:
где коэффициенты Kij вычисляются по формуле
,
Аналогично функции f и g представимы в виде
, ,
где коэффициенты fi и gi вычисляются по формулам:
, ,i=1,2,…
Интегральное уравнение в этом случае соответствует бесконечной системе уравнений
,i=1,2,…
Представление ядра может быть урезано до конечного числа слагаемых, что приводит к представлению интегрального оператора R:
, , ,
который аппроксимирует K. Тогда интегральное уравнение аппроксимируется системой n уравнений с n неизвестными:
, i=1,2,…,n
ПРИЛОЖЕНИЕ 1
function [a,r]=dif_r(wname)
[LO_D,HI_D,LO_R,HI_R] = wfilters(wname);
% вычисление коэффициентов a2k-1
len=length(LO_D);
a=zeros(len-1,1);
for k=1:len-1;
for i=0:len-2*k;
a(2*k-1)=a(2*k-1)+2*LO_D(i+1)*LO_D(i+2*k);
end;
end;
% вычисление коэффициентов rl
f=zeros(len-2,1);
f(1)=-1/2;
R=zeros(len-2);
for l=len-2:-1:2;
R(l,l)=-1;
if (2*l
Похожие работы
Интересная статья: Быстрое написание курсовой работы

(Назад)
(Cкачать работу)