Читать реферат по математике: "Операторы в вейвлетном базисе" Страница 3

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

следующим образом:

.(1.11)

Во-вторых, ортогональность {(x-k)}kZ подразумевает, что

(1.12)

и значит

(1.13)

и.(1.14)

Используя (1.9), получаем

(1.15)

и, рассматривая сумму в (1.15) по четным и нечетным индексам, имеем

.(1.16)

Используя 2-периодичность функции m0 и (1.14), после замены /2 на , получаем необходимое условие

(1.17)

для коэффициентов hk в (1.11). Заметив, что

(1.18)

и определив функцию  следующим образом:

,(1.19)

где

,k=0,…,L-1 ,(1.20)

или преобразование Фурье для 

,(1.21)

где

,(1.22)

можно показать,чтоприкаждомфиксированноммасштабеjZвейвлеты

{j,k(x)=2-j/2(2-jx-k)}kZ образуют ортонормальный базис пространства Wj.

Равенство (1.17) определяет пару квадратурных зеркальных фильтров (quadrature mirror filters, QMF) H и G, где и . Коэффициенты QMF H и G вычисляются с помощью решения системы алгебраических уравнений. Число L коэффициентов фильтра в (1.11) и (1.22) связано с числом исчезающих моментов М, и всегда четно.

Выбранный фильтр Н полностью определяет функции  и  и, таким образом, многомасштабный анализ. Кроме того, в правильно построенных алгоритмах значения функций  и  почти никогда не вычисляются. Благодаря рекурсивному определению вейвлетного базиса, все операции проводятся с квадратурными зеркальными фильтрами H и G, даже если в них используются величины, связанные с  и .

4. ОПЕРАТОРЫ

Сжатие операторов или, другими словами, представление их в разреженном виде в ортонормированном базисе непосредственно влияет на скорость вычислительных алгоритмов.

Нестандартная форма оператора Т с ядром K(x,y) достигается вычислением следующих выражений:

(4.1)

(4.2)

(4.3)

4.1 Оператор d/dx в вейвлетном базисе

Нестандартные формы некоторых часто используемых операторов могут быть вычислены явно. Построим нестандартную форму оператора d/dx. Матричные элементы , , матриц , , и матрицы , где i, l, j Z для оператора d/dx легко вычисляются как

(4.4)

(4.5)

(4.6)

(4.7)

где

(4.8)

(4.9)

(4.10)

(4.11)

Кроме того, используя (1.8) и (1.19), имеем

(4.12)

(4.13)

(4.14)

Таким образом представление d/dx полностью определяется величинами или, другими словами, отображением d/dx на подпространство V0.

Предложение 4.1. 1. Если существует интеграл (4.11), тогда коэффициенты , l Z в (5.8) удлвлетворяют следующей системе линейных алгебраических уравнений:

(4.15)

(4.16)

где

(4.17)

2. Если , тогда система (4.15)-(4.16) имеет единственное решение с конечным числом ненулевых , а именно с и .

Замечание. Если М=1, тогда система (4.15)-(4.16) имеет единственное решение, но интеграл (4.11) может не быть абсолютно сходящимся. Для базиса Хаара () , мы получаем простейший конечный дифференциальный оператор .

Замечание 2. Заметим, что выражения (4.12) и (4.13) для и () могут быть упрощены с помощью смены порядка суммирования в (5.10) и (5.11) и введения коэффициентов корреляции ,и . Выражение для особенно просто: .

Для доказательства Предложения 4.1 можно обратиться к [2].

Для решения системы (4.15)-(4.16) можно также воспользоваться итерационным алгоритмом. Начать можно си , а дальше итерировать, используя (4.15) для вычисления .


Интересная статья: Быстрое написание курсовой работы