Читать реферат по физике: "Новые реалии в физическом содержании великих уравнений электродинамики Максвелла" Страница 2
- 1
- 2
- 3
- 4
- . . .
- последняя »
распространяется в свободном пространстве посредством поперечных волн, скорость которых определяется лишь электрическими и магнитными параметрами среды, заполняющей это пространство (например, в отсутствие поглощения ). Совместное решение уравнений системы (1) позволяет также ответить на вопрос, что переносят эти волны и получить аналитическую формулировку закона сохранения электромагнитной энергии:
,(3)
согласно которому поток электромагнитной энергии компенсирует в данной точке среды джоулевы (тепловые) потери за счет электропроводности (первое слагаемое в правой части) и изменяет электрическую и магнитную энергии, либо наоборот: процессы, описываемые правой частью соотношения (3), порождают поток . При этом характеризующий энергетику данного явления вектор Пойнтинга плотности потока электромагнитной энергии , связанный с вектором объемной плотности электромагнитного импульса , отличен от нуля только там, где одновременно присутствуют электрическая и магнитная компоненты поля, векторыикоторых неколлинеарны.
Однако следует указать и на весьма ограниченный диапазон явных возможностей уравнений (1), поскольку в их рамках в принципе нельзя представить раздельное существование чисто электрических либо магнитных волн, переносящих электродинамические потоки только электрической или только магнитной энергии, хотя процессы соответствующей поляризации сред наблюдаются в эксперименте, существуют раздельно и энергетически друг от друга независимы. Кроме того, далеко не ясен вопрос о физической реализации момента импульса электромагнитного поля, соответственно, переносящих его волн, и как это явление соотносится с уравнениями Максвелла. Заметим, что еще со времен Пойнтинга его безуспешно пытаются описать этими уравнениями (см., например, результаты анализа в статье [3]).
В этой связи попытаемся аргументированно прояснить сложившуюся ситуацию, для чего продолжим далее модернизацию теперь уже уравнений (1), где нашей основной задачей будет выявление концептуально новых реалий в физическом содержании уравнений Максвелла, иллюстрирующих величие и грандиозные скрытые возможности этих уравнений в отношении полноты охвата наблюдаемых в Природе явлений электромагнетизма.
Поскольку «все новое – это хорошо забытое старое», то обратимся к физическим представлениям о векторном потенциале электромагнитного поля, который, по словам Максвелла [1], “может быть признан фундаментальной величиной в теории электромагнетизма”. Однако в наше время векторные потенциалы как физическую реальность по существу не рассматривают, им отводят лишь роль вспомогательной математической функции, в ряде случаев упрощающей вычисления. Такой общепринятый сегодня взгляд на векторные потенциалы берет начало от Герца и Хевисайда, о чем прямо говорится в цитате из статьи Герца (перевод в [4]): “… мне не кажется, что какая либо выгода достигается при введении векторного потенциала в фундаментальные уравнения; более того, хотелось бы видеть в этих уравнениях связь между физическими величинами, которые можно наблюдать, а не между величинами, которые служат лишь для вычислений ”. Не доводя до абсурдной абсолютизации мнение классика, в целом с этим приходится согласиться, так как такой взгляд обусловлен взаимно
- 1
- 2
- 3
- 4
- . . .
- последняя »
Похожие работы
| Тема: Новые реалии в физическом содержании великих уравнений электродинамики Максвелла |
| Предмет/Тип: Физика (Реферат) |
| Тема: О скрытых возможностях физического содержания уравнений Максвелла классической электродинамики |
| Предмет/Тип: Математика (Статья) |
| Тема: О скрытых возможностях физического содержания уравнений Максвелла классической электродинамики |
| Предмет/Тип: Математика (Статья) |
| Тема: Основы безвихревой электродинамики. Потенциальное магнитное поле |
| Предмет/Тип: Физика (Статья) |
| Тема: А.М.Ампер – основоположник электродинамики |
| Предмет/Тип: Физика (Реферат) |
Интересная статья: Быстрое написание курсовой работы

(Назад)
(Cкачать работу)