Читать практическое задание по физике: "Изучение кинематики и динамики вращательного движения твердого тела" Страница 2
- 1
- 2
- 3
- 4
- . . .
- последняя »
относительно неподвижной оси, можно представить в виде
Эта формула очень похожа на выражение для кинетической энергии поступательно движущегося тела только теперь вместо массы m в формулу входит момент инерции I, а вместо линейной скорости υ - угловая скорость ω.
Момент инерции в динамике вращательного движения играет ту же роль, что и масса тела в динамике поступательного движения. Но есть и принципиальная разница. Если масса - внутреннее свойство данного тела, не зависящее от его движения, то момент инерции тела зависит от того, вокруг какой оси оно вращается. Для разных осей вращения моменты инерции одного и того же тела различны.
Во многих задачах рассматривается случай, когда ось вращения твердого тела проходит через его центр массы. Положение xC, yC центра масс для простого случая системы из двух частиц с массами m1 и m2, расположенными в плоскости XY в точках с координатами x1, y1 и x2, y2 (рис. 2.), определяется выражениями:
Рис. 2. Центр масс C системы из двух частиц В векторной форме это соотношение принимает вид:
Аналогично, для системы из многих частиц радиус-вектор центра масс определяется выражением Для сплошного тела суммы в выражении для заменяются интегралами. Легко видеть, что в однородном поле тяготения центр масс совпадает с центром тяжести. Если в однородном поле тяготения твердое тело сложной формы подвесить за центр масс, то оно будет находиться в безразличном состоянии равновесия. Поэтому положение центра масс тела сложной формы можно практически определить путем последовательного подвешивания его за несколько точек и отмечая по отвесу вертикальные линии (рис. 3.).
Рис.3. Определение положения центра масс C тела сложной формы.A1, A2, A3 точки подвеса Равнодействующая сил тяжести в однородном поле тяготения приложена к центру масс тела. Если тело подвешено за центр масс, то оно находится в состоянии безразличного равновесия.
Любое движение твердого тела можно представить как сумму двух движений: поступательного движения со скоростью центра масс тела и вращения относительно оси, проходящей через центр масс. Примером может служить колесо, которое катится без проскальзывания по горизонтальной поверхности (рис. 4.). При качении колеса все его точки движутся в плоскостях, параллельных плоскости рисунка. Такое движение называется плоским.
При плоском движении кинетическая энергия движущегося твердого тела равна сумме кинетической энергии поступательного движения и кинетической энергии вращения относительно оси, проходящей через центр масс тела и перпендикулярной плоскостям, в которых движутся все точки тела: где m - полная масса тела, IC - момент инерции тела относительно оси, проходящей через центр масс.
Рис.4. Качение колеса как сумма поступательного движения со скоростью и вращения с угловой скоростью относительно оси O, проходящей через центр масс В механике доказывается теорема о движении центра масс: под действием внешних сил центр масс любого тела или системы взаимодействующих тел движется как материальная точка, в которой сосредоточена вся масса системы.
Иллюстрацией этого утверждения может служить рис. 5, на котором изображено движение тела под действием силы тяжести. Центр масс тела движется по параболической траектории как
- 1
- 2
- 3
- 4
- . . .
- последняя »
Похожие работы
Интересная статья: Основы написания курсовой работы

(Назад)
(Cкачать работу)