Читать практическое задание по математике: "Наращение и дисконтирование. Потоки платежей. Ренты" Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Факультет дистанционного обучения

Томский государственный университет

систем управления и радиоэлектроники (ТУСУР)

Кафедра АСУЛабораторная работа № 1 по дисциплине «Математическая экономика»

выполнена по учебному пособию А.А.Мицель «Математическая экономика» Выполнил:

Новицкий Александр Витальевич

гр.: з-446-а

специальности 80801 г. Сургут

2010г

Лабораторная работа №1. Наращение и дисконтирование. Потоки платежей. Ренты.

Вариант №27

Вопрос 1. Современная величина обычной ренты

Современная величина ренты является важнейшей характеристикой потока платежей, которая определяет стоимость будущего денежного потока на настоящий момент времени. Эта характеристика служит основой для многих методов финансового анализа. По определению, современная величина – это сумма всех дисконтированных членов потока платежей на начальный или предшествующий ему момент времени. Иногда вместо термина современная величина используют термины приведенная или капитализированная сумма платежей. При определении современной величины потока платежей важно правильно установить период времени от начала потока (момента времени, на который производится оценка) до момента поступления платежа (в годах). После этого можно применять формулы дисконтирования.

.

коэффициент приведения ренты равен

Вопрос 2. Принцип финансовой эквивалентности обязательств.

Этот принцип гарантирует безубыточность изменений финансовых отношений для каждой из сторон. Эквивалентными считаются платежи, которые, будучи приведёнными по заданной процентной ставке к одному моменту времени, оказываются равными.

Вопрос 3. Каким образом учитывается инфляция при вычислении наращенной суммы?

Существует множество различных способов учета инфляции при наращении сложных процентов. Рассмотрим один из них, основанный на применении формулы Фишера. Пусть – ожидаемый годовой темп инфляции в виде ставки сложных процентов (мы не касаемся здесь методики определения этого показателя), – ставка процентов без учета инфляции, – реальная ставка с учетом инфляции. Тогда реальная ставка определяется из уравнения, которое называется уравнением Фишера:

.

Решая это уравнение относительно , получим

. Ставка без учета инфляции (которую называют также номинальной ставкой) . При малых значениях используют приближенную формулу , а для реальной ставки: .

Вопрос 4. Как определяется эффективная ставка?

Для сравнения различных условий начисления процентов (при различных номинальных ставках и различном количестве начислений) используют понятие эффективной ставки. Эффективная ставка – это годовая ставка процентов, начисляемых один раз в год, которая дает тот же финансовый результат, что и - разовое начисление в год с использованием номинальной ставки . Таким образом, по определению, должно выполнятся равенство множителей наращения

,

где – эффективная ставка. Отсюда получаем

.

Задача 1. Какую ставку должен назначить банк, чтобы при годовой инфляции 12% реальная ставка оказалась равной 6%?

Пусть


Интересная статья: Основы написания курсовой работы