Читать практическое задание по информатике, вычислительной технике, телекоммуникациям: "ЭВМ с использованием математического пакета MathCad в среде Windows 98 для решения дифференциального уравнения n-го порядка" Страница 2
системы обыкновенных дифференциальных уравнений численным методом Рунге-Кута на интервале от t0 до t1 при M фиксированных шагах решения и правыми частями уравнений, записанными в D. Тогда решение уравнения динамики электротехнической системы с помощью встроенной функции rkfixed выглядит так:
Зададим интервал интегрирования t0 - t1, количество шагов интегрирования М, вектор заданных начальных условий ic и правую часть дифференциального уравнения y(t):
Сформируем матрицу системы дифференциальных уравнений, соответствующую заданному дифференциальному уравнению 4-го порядка.
Применим функцию:
-Интервал времени.
-Значение искомой координаты.
Рисунок1. Матрица решений системы уравнений.
По этой таблице можно определять расчётные значения исходного вектора на заданном шаге.
Результаты численного решения дифференциального уравнения можно вывести в виде таблицы с прокруткой времени и искомой неизвестной (см файл в Mathcad). Согласно выбранному М получили 1500 строк.
Рисунок2. Результаты пошагового решения дифференциального уравнения, представленные в виде таблицы.
Графическое представление результатов численного решения дифференциального уравнения 4-го порядка в декартовой системе координат представлено на рисунке 3. График изображён так, что можно проверить значения строки 1500. При Т=150, Х=4,563*10^130
Рисунок 3. Графическое представление результатов численного решения дифференциального уравнения 4-го порядка в декартовой системе координат. При y(t) = 0 и заданных начальных условиях.
2.1.2 При y(t) = 1(t) и нулевых начальных условиях
В этом случае необходимо изменить начальные условия и задать правую часть дифференциального уравнения.
Рисунок 4. Графическое представление результатов численного решения дифференциального уравнения 4-го порядка в декартовой системе координат. При y(t) = 1(t) и нулевых начальных условиях.
2.1.3 При y(t) = 1(t) и заданных начальных условиях
Изменим условия решения дифференциального уравнения. Зададим начальные условия для искомой переменной х0(0) = 1, начальные условия для других переменных равны нулю.( x1(0) = x2(0)= x3(0) = 0).См.таблицу1.
Рисунок 5. Графическое представление результатов численного решения дифференциального уравнения 4-го порядка в декартовой системе координат. При y(t) = 1(t) и ненулевых начальных условиях. х0(0) = 1
Зададим начальные условия для искомой переменной х0(0) =- 1, начальные условия для других переменных равны нулю.( x1(0) = x2(0)= x3(0) = 0).
Рисунок 6. Графическое представление результатов численного решения дифференциального уравнения 4-го порядка в декартовой системе координат. При y(t) = 1(t) и ненулевых начальных условиях х0(0) =- 1.
2.1.4 При y(t) = cos(aּπּt) и нулевых начальных условиях.
a = 0.35
Рисунок 7. Графическое представление результатов численного решения дифференциального уравнения 4-го порядка в декартовой системе координат.
При y(t) = cos(aּπּt) и нулевых начальных условиях(a = 0.35)._
При y(t) = cos(aּπּt) и ненулевых начальных условиях.
a = 0.35
Рисунок 8. Графическое представление результатов численного решения
Похожие работы
Интересная статья: Основы написания курсовой работы

(Назад)
(Cкачать работу)