Читать курсовая по информатике, вычислительной технике, телекоммуникациям: "Проектирование системы оптимального корректирующего устройства" Страница 12

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

показатель перерегулирования.

4.2 Определение автоколебаний в замкнутой системе

Для определения возможности возникновения автоколебаний в замкнутой системе воспользуемся частотным методом анализа симметричных автоколебаний. Однако прежде чем использовать этот метод необходимо линеаризовать нелинейный элемент с помощью метода гармонической линеаризации.

Согласно методу гармонической линеаризации нелинейный элемент, описываемый уравнением , заменяется на эквивалентный линейный. Условием эквивалентности является совпадение линейного и нелинейного элементов при обработке одинаковых гармонических сигналов .

Таким образом, эквивалентный линейный элемент описывается уравнением:

,

где – эквивалентный комплексный коэффициент усиления (ЭККУ);

– амплитуда автоколебаний.

ЭККУ можно представить в виде:

,

где коэффициенты гармонической линеаризации.

В данном случае рассматривается нелинейный элемент типа «насыщение», описываемый однозначной нелинейностью. Для всех однозначных нелинейностей . Следовательно, ЭККУ примет вид:

.

Линейная часть системы такова, что выполняется гипотеза фильтра, то есть график ЛАЧХ линейной части системы состоит из асимптот с наклоном не менее -20 дБ/дек. Следовательно, выходной сигнал нелинейного элемента раскладывается в ряд Фурье и рассматривается только первая гармоника разложения.

Таким образом:

.

Рассчитаем ЭККУ, причем параметры нелинейности примем , , а коэффициент усиления учтем при построении годографа Найквиста:

Таким образом, ЭККУ нелинейного элемента:

.

Исследуем возможность возникновения автоколебаний в замкнутой системе с помощью частотного метода. Для этого на одной координатной плоскости (рис. 4.6) изобразим годограф Найквиста (АФЧХ разомкнутой системы из п.1.4.1) и годограф ЭККУ (инверсный ЭККУ взятый с обратным знаком):

,

.

Рис. 4.6. Годографы Найквиста и ЭККУ

Из рис. 4.6 видно, что годографы Найквиста и ЭККУ не пересекаются, следовательно, возможности возникновения автоколебаний в системе нет.

4.3 Отработка гармонических сигналов

Построим реакции системы с учетом насыщения в УМ по выходу УМ (рис. 4.7) и по выходу ДОС (рис. 4.8) на гармонический входной сигнал с амплитудой 1 В, 3 В и 5 В, и с частотой . Построение выполнено в программе VisSim. Рис. 4.7. Реакции системы по выходу УМ на гармонический сигнал

Рис. 4.8. Реакции системы по выходу ДОС на гармонический сигнал

Рассчитаем амплитудно-фазовые искажения по выходу ДОС и сравним их со значениями, полученными в п.2.3.3 (табл. 4.3).

Таблица 4.3

Безучета нелинейности

С учетомнелинейности

А = 1 В

А = 3 В

А = 5 В

,дБ

0,701

0,642

6,472

9,525

,град

16,23

16,232

85,217

102,261

При подаче на вход гармонического сигнала с амплитудой А = 1 В, система работает в зоне линейности УМ и амплитудно-фазовые искажения близки значениям полученным при исследовании линейной системы. При увеличении амплитуды входного сигнала система работает в зоне нелинейности УМ, вследствие чего сигнал на выходе


Интересная статья: Быстрое написание курсовой работы