Читать контрольная по финансовому менеджменту, финансовой математике: "Линейные уравнения парной и множественной регрессии" Страница 2

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Для оценки качества уравнения регрессии в целом необходимо проверить статистическую значимость индекса детерминации: проверяется нулевая гипотеза , используется .Таблица №6

Регрессионнаястатистика

R-квадрат

0,000109693

.Т.к. Значение детерминации R-квадрат имеет малое значение, которое менее 1%, то дальнейшее решение не имеет смысла, т.к. вероятность того что прогноз будет верным меньше 1%.

Задача №2

Используя данные, приведенные в таблице: построить линейное уравнение множественной регрессии;

    оценить значимость параметров данного уравнения и построить доверительные интервалы для каждого из параметров, оценить значимость уравнения в целом, пояснить экономический смысл полученных результатов;рассчитать линейные коэффициенты частной корреляции и коэффициент множественной детерминации, сравнить их с линейными коэффициентами парной корреляции, пояснить различия между ними;вычислить прогнозное значение y при уменьшении вектора x на 6 % от максимального уровня, оценить ошибку прогноза и построить доверительный интервал прогноза;

Таблица №5

номернаблюдения,i

Накоплениясемьи, Y(y.e.)

Доходсемьи, X1(y.e.)

Расходына питание,X 2 (y.e.)

1

2

20

5

2

6

27

6

3

7

26

7

4

5

19

5

5

4

15

5

6

2

15

5

7

7

28

10

8

6

24

7

9

4

14

6

10

5

21

7

11

5

20

10

12

3

18

6

Таблица №6 Параметры (коэффициенты) уравнения регрессии

Коэффициенты

Y-пересечение

-1,767785782

x1

0,232792618

x2

0,24953991

Множественная регрессия широко используется в решении проблем спроса, доходности акций, изучении функции издержек производства, в макроэкономических расчетах и целого ряда других вопросов эконометрики. В настоящее время множественная регрессия - один из наиболее распространенных методов в эконометрике. Основная цель множественной регрессии - построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.На основании этих данных запишем уравнение регрессии: .Таблица №7 Регрессионная статистика

R-квадрат

0,663668925

НормированныйR-квадрат

0,588928686

! Параметр R-квадрат, представляет собой квадрат коэффициента корреляции rxy2 и называется коэффициентом детерминации. Величина данного коэффициента характеризует долю дисперсии зависимой переменной y, объясненную регрессией (объясняющей переменной x). Соответственно величина 1 - rxy2 характеризует долю дисперсии переменной y, вызванную влиянием всех остальных, неучтенных в эконометрической модели объясняющих переменных. Доля всех неучтенных в полученной


Интересная статья: Быстрое написание курсовой работы