Читать контрольная по экономике отраслей: "Модель авторегрессии в корреляционной теории" Страница 2
Порядок модели можно находить из условия не убывания дисперсии ошибки предсказания при дальнейшем повышении порядка. Довольно эффективным методом определения порядка модели АР является метод, основанный на проверке близости корреляционной функции случайного процесса на выходе обеляющего АР фильтра к корреляционной функции белого шума.Рисунок 1. АР фильтр предсказания
Процессы АР можно характеризовать конечным числом значений функции, определяемой корреляционной функцией.
Такая функция носит название частной автокорреляционной функции. Ее можно выразить через коэффициенты АР, порядок которых изменяется от единицы до .
Т.к. коэффициент АР с номеромполагается равным нулю, то процесс АР можно характеризовать конечным набором не равных нулю коэффициентов АР, с номером равным р для моделей АР с порядками от единицы до-, .
Поэтому значения частной автокорреляционной функции полагаются равными , . Можно показать, что первые три значения частной автокорреляционной функции описываются выражениями вида ,
,
. (10) Достоинством частной автокорреляционной функции по сравнению с автокорреляционной функцией является ее конечная длина.
Как показал Бартлетт, значение частной автокорреляционной функции можно полагать равным нулю, если оно меньше , где - длина реализации, по которой производилась оценка значений функции корреляции. Таким образом, по существу, производится оценка порядка модели АР.
Спектр процесса авторегрессии
Формула для нахождения спектра модели АР лежит в основе параметрического спектрального оценивания.
Для ее вывода будем рассматривать процесс АР как реакцию формирующего фильтра , на вход которого подаются некоррелированные отсчеты .
Можно показать, что -преобразование передаточной функции АР фильтра имеет вид , (11) где , . (12) -преобразования СПМ выходного и входного процессов связаны соотношением . (13) Чтобы найти СПМ выходного АР процесса необходимо в (13) сделать заменуи положить, что для белого шума– постоянная величина.
Тогда из (13) следует выражение для параметрической оценки СПМ . (14)
Выражение (14) широко используется в параметрическом методе спектрального оценивания.
В качестве параметров, полностью характеризующих спектральную оценку случайного процесса, выступают коэффициенты АР и порядок модели.
Параметрическое спектральное оценивание обладает рядом преимуществ по сравнению с традиционными методами спектрального оценивания. К ним относятся: более высокое спектральное разрешение при использовании коротких выборок, отсутствие боковых лепестков.
С помощью модели АР можно получать спектральные оценки случайных процессов со сложной формой СПМ.
Для этого может быть придется использовать модели АР большого порядка. На основе модели АР легко синтезируются оптимальные фильтры подавления, согласованные не только по частоте и полосе спектра, но и по форме спектра случайного процесса.
Достоинством формулы (14) является возможность анализировать СПМ в аналитическом виде, что невозможно сделать при использовании традиционных методов спектрального оценивания на основе преобразования Фурье.
Например, можно найти формулы для определения частоты максимумов и минимумов СПМ.
Чтобы определить
Похожие работы
Интересная статья: Быстрое написание курсовой работы

(Назад)
(Cкачать работу)