Читать диплом по педагогике: "Расширение кольца с помощью полутела" Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования Вятский государственный гуманитарный университет

Математический факультет

Кафедра алгебры и геометрии

Выпускная квалификационная работа

Расширение кольца с помощью полутела

Выполнил:

студент V курса математического факультета

Лукин Михаил Александрович

_____________________

Научный руководитель:

д. ф.-м. н., профессор, зав. кафедрой алгебры и геометрии

Вечтомов Евгений Михайлович

_____________________

Рецензент:

к. ф.-м. н., доцент, доцент кафедры алгебры и геометрии

Чермных Василий Владимирович

_____________________ Допущен к защите в государственной аттестационной комиссии

«___» __________2005 г.Зав. кафедрой Е. М. Вечтомов

«___»___________2005 г.Декан факультета В. И. Варанкина Киров – 2005

Содержание

Введение 3

§1. Допустимые кольца и решетки 6

§2. Допустимые полутела 10

§3. О единственности расширения 12

Заключение 14

Библиографический список 15

Введение

Теория полуколец является активно развивающимся разделом современной алгебры, находящим применения в компьютерной алгебре, идемпотентном анализе, теории оптимального управления.

Для получения новых конструкций полуколец может оказаться полезным понятие двойного расширения полуколец (или 0-1 расширения).

В работе исследуется следующий вопрос. Для каких кольца R, полутела U и ограниченной дистрибутивной решетки L существует 0-1-расширение кольца R и полутела U с помощью решетки L?

Полукольцом называется такая алгебраическая структура S; +, , 0, что S; +, 0 - коммутативный моноид с нулем 0, S, - полугруппа и в S выполняются тождества a(b+c)=ab+ac, (a+b)c=ac+bc и a0=0a=0. Неодноэлементное полукольцо с делением, не являющееся кольцом, называется полутелом (с нулем). Если из полутела S исключить 0, то получим структуру S; +, , которую будем называть полутелом без нуля, или просто полутелом. Полукольцо с квазитождеством a+b=0 a=0 назовем антикольцом. Полукольцо с тождеством a+a=a называется идемпотентным. А полукольцо с квазитождеством a+b=a+c b=c называется сократимым.

Полукольцо S назовем 0-расширением полукольца K с помощью полукольца T, если на S существует такая конгруэнция , что K[0] - изоморфно нулевому ядру - и S/T. Аналогично, полукольцо S с единицей 1 называется 1-расширением полукольца K, возможно без нуля, с помощью полукольца T, если на S существует конгруэнция , для которой K[1] - изоморфно единичному ядру - и S/T. В отличие от колец данные расширения позволяют шире представлять сами полукольца, скажем, изучить симбиоз колец и полутел, или колец и антиколец (см. [1]).

Для произвольного полукольца S обозначим через R(S) множество всех аддитивно обратимых элементов в S, а через U(S) – множество всех обратимых элементов в S в случае, когда S обладает 1. Очевидно, что R(S) является кольцом и строгим идеалом полукольца S (т.е. a+bR(S) a, bR(S)).

Пусть S/R(S) – фактор-полукольцо полукольца S по конгруэнции Берна, соответствующей идеалу R(S): s конгруэнтно t s+a=t+b для некоторых a, bR(S). Положительное регулярное полукольцо, все идемпотенты которого центральны, называются arp-полукольцом [2]. При этом положительность полукольца S с 1 означает, что все элементы вида a+1, aS, обратимы, а его регулярность


Интересная статья: Основы написания курсовой работы