Читать учебное пособие по математике: "Геометрические построения на плоскости" Страница 2

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

линейкой; б) через данную точку плоскости провести под углом α к некоторой данной прямой; в) если построены отрезок АВ и фигура ф , то установить, содержит ли фигура Ф точку, из которой отрезок АВ виден под углом α , и если такая существует, то построить ее.

Постановка задачи на построение

Задача на построение состоит, в том, что требуется построить указанными инструментами фигуру, если дана некоторая другая фигура и указаны некоторые соотношения между элементами искомой фигуры и данной.

Каждая фигура, удовлетворяющая условию задачи, называется решением задач.

Построения, о возможности которых оказано в аксиоме 3, вместе с построениями, перечисленными в аксиомах математических инструментов, назовем основными построениями (ОП).

Найти решение задачи на построение - значит указать конечную последовательность основных построений, после выполнения которых искомая фигура будет считаться построенной в силу принятых аксиом конструктивной геометрии.

Перечень основных построений, а следовательно, и ход решения задачи, зависит от употребляемого набора инструментов. Следует заметить, что такой подход в определении нахождения решения не рациональный. Иногда целесообразнее укрупнить шаги построения.

Рассматривают как шаг построения целые блоки основных построений. Эти блоки представляют собой решения элементарных задач на построение. Их назовем элементарными построениями. Тогда можно дать следующее определение.

Решить задачу на построение - это значит указать такую конечную последовательность основных (ОП) и элементарных построений (ЭП), после выполнения которых искомая фигура может считаться построенной в силу общих аксиом конструктивной геометрий.

В качестве элементарных построений (ЭП) возьмем следующие задачи.

ЭП I. Отложить на данном луче от его начала отрезок, равный данному отрезку.

ЭП 2. Отложить от данного луча в данную полуплоскость угол, равный данному углу.

ЭП 3. Построить треугольник по трем сторонам.

ЭП 4. Построить треугольник по двум сторонам и углу между ними.

ЭП 5. Построить треугольник по стороне и двум прилежащим углам.

ЭП 6. Построить биссектрису данного неразвернутого угла.

ЭП 7. Построить серединный перпендикуляр данного отрезка.

ЭП 8. Построить середину данного отрезка.

ЭП 9. Построить прямую, проходящую через данную точку и перпендикулярную данной прямой. (При этом данная точка может лежать на данной прямой, может и не лежать на ней).

ЭП 10. Построить прямую, проходящую через данную точку и параллельную данной прямой.

ЭП 11. Построить прямоугольный треугольник по гипотенузе.

ЭП 12. Построить прямоугольный треугольник по гипотенузе и катету.

ЭП 13. Построить касательную к окружности, проходящую через данную на ней точку.

Иногда условиям задачи на построение удовлетворяют несколько фигур.

Решить задачу на построение - значит найти все ее решения. Поясним это определение.

Фигуры, удовлетворяющие условию задачи, могут отличаться размерами, формой и положением на плоскости. Фигуры, удовлетворяющие условию задачи, отличающиеся размерами или формой, будем считать различными. С расположением дело обстоит так.

Если условие задачи не предусматривает определенного расположения искомой фигуры относительно


Интересная статья: Быстрое написание курсовой работы