Читать статья по математике: "Причинах сдвигов спектральных линий звёзд" Страница 3

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

температурные сдвиги.

По сравнению с веществом в неионизованном состоянии, вещество в состоянии плазмы имеет дополнительные возможности для излучения квантов света. Речь идёт об излучении, возникающем при рекомбинации ионов и свободных электронов. Спектр энергий свободных электронов является сплошным, и отсюда делается вывод о том, что и рекомбинационные спектры также должны быть сплошными. Но в этой, казалось бы, безупречной логике имеется слабое место.

Действительно, энергии свободных электронов могут принимать любые значения из сплошного спектра, но это отнюдь не исключает того, что, при конкретных значениях физических параметров плазмы, значения энергий свободных электронов являются не любыми, а тоже вполне конкретными. Понятие электронной температуры имеет физический смысл только тогда, когда энергии свободных электронов находятся в пределах довольно-таки узкой полосы. К сожалению, нам не удалось найти данных о ширине распределения энергии электронов в плазме. Логично предположить, что оно намного уже, чем максвелловское – из-за коллективного взаимодействия, которого нет в газе нейтральных частиц. Тогда можно говорить об уровне энергии свободных электронов в плазме, с которого электрон при рекомбинации “сваливается” на какой-либо из атомарных уровней. При этом рекомбинационный спектр не будет сплошным: у него будет ярко выраженный линейчатый характер (см. Рис.1).Рис.1. Переходы рекомбинационного спектра (схематически). Eo–Ei – атомарные уровни энергии, Ee – уровень энергии свободных электронов.

Чтобы получить представление о том, насколько отстоит уровень энергии свободных электронов от уровня энергии ионизации атома, следует вспомнить о том, что нуль энергии свободных электронов соответствует как раз энергии ионизации. Так, при электронной температуре в 6000оК, уровень свободных электронов превышает уровень ионизации всего на 0.52 эВ. При этом, для водородной плазмы рекомбинационный спектр представлял бы собой линии серии Лаймана, сдвинутые на эти самые 0.52 эВ в сторону больших энергий. Если, по каким-либо причинам, в спектре имелись бы лишь эти рекомбинационные линии, то их интерпретация как допплеровски сдвинутых атомарных линий являлась бы непростой задачей. В произвольном случае, лишь по счастливой случайности может оказаться так, что несколько изолированных линий, расположенных подряд, будут иметь “сдвиги”, которые при пересчёте дадут примерно одинаковые допплеровские скорости. Дело осложняется тем, что, в отличие от атомарных линий, положения которых не зависят от температуры, рекомбинационные линии являются “плавающими”: при изменении электронной температуры они сдвигаются, причём на одну и ту же величину по шкале энергий.

Впрочем, имеется счастливое обстоятельство, облегчающее задачу отождествления линий. Рекомбинационные линии характерны лишь для излучающей плазмы, а в качестве вспомогательных источников света, дающих опорные спектральные линии, используется тоже плазма – как правило, в электрической дуге между металлическими электродами (железными, титановыми, ванадиевыми – эти элементы дают много линий). И, фактически, звёздная спектроскопия занимается, в основном, сопоставлением рекомбинационных линий звёзд с рекомбинационными линиями лабораторных


Интересная статья: Быстрое написание курсовой работы