Читать статья по математике: "Пуанкаре и топология" Страница 3
- 1
- 2
- 3
- 4
- 5
- . . .
- последняя »
он умел их подчинить. И, наконец, конечно — весь цикл его собственно топологических работ.
Ничем иным как именно проявлением гениальной топологической интуиции был тот факт, что основной стержень для всего дальнейшего развития топологии Пуанкаре увидел в понятии гомологии. При этом первая формулировка этого понятия (в основном мемуаре 1895 г. «Analysis Situs») апеллировала именно к непосредственной геометрической наглядности, под которую лишь несколько лет спустя была подведена строгая логическая база.
Столь же интуитивным, хотя совершенно строго сформулированным, было второе основное топологическое понятие, введённое Пуанкаре — понятие фундаментальной группы. Введя это понятие, Пуанкаре оказывается зачинателем всего огромного направления гомотопической топологии, дальнейшим развитием которого мы обязаны прежде всего Брауэру, затем Хопфу (H. Hopf), Гуревичу и длинному ряду последующих математиков. Здесь следует заметить, что определение гомотопических групп, т.е. групп, обобщающих понятие фундаментальной группы на любое число измерений, было впервые дано в 1932 г. знаменитым чешским топологом Э. Чехом, который, правда, не подверг их дальнейшему исследованию; это последнее, как известно, составляет заслугу В. Гуревича.
К наиболее замечательным и наиболее рано разработанным частям гомотопической топологии относится теория векторных (и поливекторных) полей и их особенностей, тесно связанная с теорией неподвижных точек непрерывных отображений. Основателем этой теории опять-таки является Пуанкаре: первые относящиеся к ней определения и факты, в частности, фундаментальное понятие индекса особенности векторного поля, он установил ещё в восьмидесятых годах, в своих работах по качественной теории дифференциальных уравнений, т.е. ещё до создания своих собственно топологических работ.
В настоящее время трудно переоценить фундаментальное значение этих идей и результатов Пуанкаре для всего дальнейшего развития не только теории дифференциальных уравнений, но и всего современного математического анализа.
В частности, что касается специально теорем о существовании неподвижных точек при тех или иных непрерывных отображениях, то Пуанкаре уже понимал значение этих теорем как средства доказательства теорем существования в анализе. Это видно хотя бы по тем огромным усилиям, которые он затратил на доказательство своей «последней геометрической теоремы» — о существовании неподвижной точки для определённого класса непрерывных отображений плоского кругового кольца на себя. Эта последняя работа Пуанкаре производит на читателя, я бы сказал, трагическое впечатление. В кратком введении к ней автор пишет, что никогда не публиковал столь несовершенного произведения — в самом деле, ему не удалось найти доказательство основного результата (последней геометрической теоремы Пуанкаре), которому работа посвящена. Тем не менее, Пуанкаре считал возможным и необходимым опубликование полученных им частных результатов — ввиду важности предмета, а также ввиду того, что, как он говорил, в своём возрасте он уже не надеется получить полное решение вопроса. В действительности Пуанкаре в это время было лишь 57 лет, и дело было, конечно, не в возрасте, а в уже начавшейся тяжёлой болезни (в те времена почти недоступной
- 1
- 2
- 3
- 4
- 5
- . . .
- последняя »
Похожие работы
| Тема: Волшебный мир Пуанкаре |
| Предмет/Тип: Математика (Доклад) |
| Тема: Волшебный мир Пуанкаре |
| Предмет/Тип: Математика (Доклад) |
| Тема: Некоторые вопросы геометрии Лобачевского на модели Пуанкаре |
| Предмет/Тип: Математика (Диплом) |
| Тема: Анри Пуанкаре |
| Предмет/Тип: Математика (Реферат) |
| Тема: Основные результаты Анри Пуанкаре в области физики |
| Предмет/Тип: Биология (Реферат) |
Интересная статья: Быстрое написание курсовой работы

(Назад)
(Cкачать работу)