Читать статья по химии: "Структура и состав анодно-искровых покрытий на вентильных металлах" Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Структура и состав анодно-искровых покрытий на вентильных металлах

В.Ф.Борбат, О.А.Голованова, А.М.Сизиков, Омский государственный университет, кафедра неорганической химии

В последнее время получил распространение электрохимический метод нанесения тугоплавких защитных покрытий, основанный на использовании явления анодного искрового разряда. Анодно-искровая технология является результатом развития традиционного анодирования. При некоторых значениях напряжения возникают качественные изменения процесса, которые заключаются в резком увеличении электронной составляющей тока, протекающего через границу раздела электролит-оксид и оксид-металл, и появлении многочисленных электрических пробоев пленки. Это приводит к существенному повышению температуры в каналах пробоя и окружающих их участках, благодаря чему рост покрытий значительно ускоряется. Параллельно в каналах пробоя образуется низкотемпературная плазма, в которой протекают реакции, приводящие к включению в оксид компонентов электролита. Таким образом, следствием пробоя при высоких напряженностях поля являются, с одной стороны, ускорение процесса образования оксида, с другой - изменение физических и химических свойств получаемого покрытия [1].

Химический, фазовый состав и механические свойства анодно-искровых покрытий близки к свойствам обычной керамики. Они характеризуются твердостью, жаропрочностью, стойкостью к истиранию, высокими электроизоляционными и антикоррозионными свойствами. Весьма привлекательной представляется возможность их нанесения на изделия из легкоплавких металлов, что с помощью традиционной обжиговой технологии недостижимо. Большее распространение в промышленности получил метод нанесения оксидных покрытий в серной кислоте.

Анализ анодно-искровых покрытий показывает, что в них, наряду с оксидами металла подложки, в больших количествах содержатся атомы или группы атомов, входящих в состав электролита [1]. Внедрение ионов электролита определяется природой электролита, связано с механизмом формирования и многочисленными анодными процессами (электрохимическими, химическими, адсорбционными, процессами ионного обмена и др.), протекающими на поверхности пленки, в порах и объеме оксида. Вклад каждого из этих процессов зависит от условий формирования и концентрации электролита .

В связи с изложенным представлялось важным исследовать состав покрытий, получаемых плазменно-электролитическим оксидированием, на алюминии, титане и тантале в серной кислоте.

Для изучения фазового состава образцов по их межплоскостным расстояниям был проведен рентгенофазовый анализ. Рентгенограммы образцов были получены методом порошка и пленки на установке "Дрон-3" в монохроматизированном "медном" излучении.

Для определения элементного состава получаемых анодно-искровым методом покрытий и изучения распределения химических элементов по поверхности исследуемых образцов был проведен рентгеноспектральный анализ. Рентгенограммы образцов были получены методом пленки на установке МАР-3.

1. Результаты и их обсуждение.

Исследование поверхности титанового электрода, полученного в условиях : I = 0,3 А,И = 120 В,t = 900 сек. (концентрация кислоты варьировалась от 10 до 50 %), показало, что, кроме оксида


Интересная статья: Основы написания курсовой работы