Читать реферат по математике: "Интегральное исчисление. Исторический очерк." Страница 1
- 1
- 2
- 3
- . . .
- последняя »
Учебно-воспитательный комплекс 1861
Интегральное исчисление.
Исторический очерк.
(реферат)
Ученица: Холодная Анна
Класс: 11”А”
Москва 2000 г.
Понятие интеграл непосредственно связано с интегральным исчислением – разделом математики, занимающимся изучением интегралов, их свойств и методов вычисления. Вместе с дифференциальным исчислением интегральное исчисление составляет основу математического анализа.
Истоки интегрального исчисления относятся к античному периоду развития математики и берут начало от метода исчерпывания, разработанного математиками Древней Греции.
Метод исчерпывания это набор правил для вычисления площадей и объёмов, разработка которых приписывается Евдоксу Книдскому. Дальнейшее развитие метод получил в работах Евклида, а особым искусством и разнообразием применения метода исчерпывания славился Архимед.
Типичная схема доказательств методом исчерпывания выглядела следующим образом. Для определения величины A строилась некоторая последовательность величин С1, С2, …, Сn, … такая, что
Предполагалось также известным такое B, что
и что для любого целого K можно найти достаточно большое n, удовлетворяющее условию:
Где D – постоянно. После громоздких рассуждений из последнего выражения удавалось получить:
Как видно из приведённой схемы метод был основан на аппроксимации рассматриваемых объектов ступенчатыми фигурами или телами, составленными из простейших фигур или пространственных тел (прямоугольников, параллелепипедов, цилиндров и т.п., обозначенных последовательностью С1, С2, …, Сn, …). В этом смысле метод исчерпывания можно рассматривать как античный интегральный метод.
Кризис и упадок древнего мира привёл к забвению многих научных достижений. О методе исчерпывания вспомнили лишь в XVII веке. Это было связано с именами Исаака Ньютона , Готфрида Лейбница, Леонарда Эйлера и ряда других выдающихся учёных, положивших основу современного математического анализа.
В конце XVII и в XVIII веке все возрастающие запросы практики и других наук побуждали ученых максимально расширять область и методы исследований математики. Понятия бесконечности, движения и функциональной зависимости выдвигаются на первое место, становятся основой новых методов математики.
В конце XVII и в XVIII веке в математике и механике были получены классические результаты фундаментального значения. Основным здесь было развитие дифференциального и интегрального исчисления, теории дифференциальных уравнений, вариационного исчисления и аналитической механики.
Основные понятия и теория интегрального и дифференциального исчислений, прежде всего связь операций дифференцирования и интегрирования, а также их применения к решению прикладных задач были разработаны в конце XVII века, но основывались на идеях, сформулированных в начале XVII веке великим математиком и астрономом Иоганом Кеплером.
В ноябре 1613 года королевский математик и астролог австрийского двора И. Кеплер праздновал свадьбу. Готовясь к ней, он приобрёл несколько бочек виноградного вина. При покупке Кеплер был поражён тем, что продавец определял вместимость бочки, производя одно единственное действие - измеряя расстояние от наливного отверстия до самой дальней от него
- 1
- 2
- 3
- . . .
- последняя »
Похожие работы
| Тема: Интегральное исчисление. Исторический очерк |
| Предмет/Тип: Математика (Реферат) |
| Тема: Теоретические и методические аспекты изучения темы "Интегральное исчисление функции нескольких переменных" |
| Предмет/Тип: Педагогика (Диплом) |
| Тема: Агрессия как интегральное явление |
| Предмет/Тип: Социология (Статья) |
| Тема: Интегральное восприятие |
| Предмет/Тип: Физика (Другое) |
| Тема: Интегральное восприятие |
| Предмет/Тип: Физика (Реферат) |
Интересная статья: Основы написания курсовой работы

(Назад)
(Cкачать работу)