Читать реферат по математике: "Расчетно-графическая работа по высшей математике" Страница 1


назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Расчетно-графическая работа по высшей математике 1. Описание изделия

На рисунке 1 изображено в трех проекциях изделие - поверхность, состоящая из одного куска цилиндрической и двух кусков конической поверхностей (КоКоЦ).Дополнительные сведения:

раствор конуса= 300

радиус цилиндра R = 5 см

расстояние от оси конуса до оси цилиндра l =2 см

расстояние между осью цилиндра и вершиной каждого из конусов L = 6 см

    Выбор системы координат

В качестве начала координат возьмем точку пересечения осей конусов. Ось абсцисс пустим вдоль оси первого конуса, ось ординат - вдоль оси второго конуса, ось аппликат - параллельно оси цилиндра, причем так, чтобы система координат была правой.

Расстояние d от вершин конусов до начала координат находим с помощью Теоремы Пифагора:2

+ l = + 2 = 7.7 (см)

таким образом ось цилиндра описывается следующим уравнением:

Вершина первого конуса имеет следующие координаты - (-7.7; 0; 0), вершина второго конуса - (0; -7.7; 0).

    Аналитическое описание несущих поверхностей

Уравнение цилиндрической поверхности:

+2)2+(y+2)2 = R2 ( I )

Параметризация цилиндрической поверхности:

(II)

Определение положения шва на цилиндрической детали:

потребуем, чтобы параметр u. При этих значениях u шов наиболее удален от конусов и описывается двойным уравнением x = y = - l -.

Уравнение первой конической поверхности:

(x + 7.7)2 tg2 = y 2+ z2 (III)

Параметризация первой конической поверхности:

(IV)

Определение положения шва на первой конической детали:

потребуем, чтобы [-sin;sin]

Тогда шов будет наиболее удален от второго конуса.

Уравнение второй конической поверхности:

(y+7.7)2 tg2=x2+z2(V)

Параметризация второй конической поверхности аналогично первой (IV):

(VI)

(Также можно обойтись и без нее за счет использования симметрии).

    Описание линии пересечения цилиндра и первого конуса на выкройке цилиндра

Подставим параметризацию цилиндра (II) в уравнение первого конуса (III), получаем уравнение:

(-2+Rcos+7.7)2tg2=(-2+Rsin)2+v2, которое в дальнейшем преобразуется к виду:

v = v(u) = (VII)

Знак “+” соответствует “верхней” половине линий отреза, Z 0 , знак “-” - “нижней” половине этой линии. При некоторых значениях параметра u подкоренное выражение отрицательно, что соответствует отсутствию пересечения образующей цилиндра с первым конусом.

    Описание линии пересечения цилиндра и второго конуса на выкройке цилиндра

Линию пересечения цилиндра с первым конусом следует строить только при u. Отражая эту линию симметрично относительно прямой u = , получаем линию пересечения цилиндра со вторым конусом.

    Описание линии пересечения цилиндра и первого конуса на выкройке конуса

Подставляя параметризацию первого конуса (IV) в уравнение цилиндра (I), получаем уравнение:

(-7.7+cos+2)2 + (sincos+2)2 = R2

преобразуем:

(cos-5.7)2 + (sincos+2)2 = R2

2cos2-2*5.7*cos+32.49+2sin2cos2+4sincos+4-R2 = 0

2(cos2+sin2cos2)+2(-5.7cos+2 sincos)+36.49-R2 = 0 Отсюда

=()=(IX)

a()=1- sin2sin2 ;

b()=2(2sincos-5.7cos);

c=36.49-R2 .



Интересная статья: Основы написания курсовой работы