Читать реферат по математике: "Оценивание параметров и проверка гипотез о нормальном распределении" Страница 1

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Оценивание параметров и проверка гипотез о нормальном распределении

Расчетная работа

Выполнил Шеломанов Р.Б.

Кафедра математической статистики и эконометрики

Московский государственный университет экономики, статистики и информатики

Москва 1999

ЗАДАНИЕ № 23

Продолжительность горения электролампочек (ч) следующая:

750

750

756

769

757

767

760

743

745

759

750

750

739

751

746

758

750

758

753

747

751

762

748

750

752

763

739

744

764

755

751

750

733

752

750

763

749

754

745

747

762

751

738

766

757

769

739

746

750

753

738

735

760

738

747

752

747

750

746

748

742

742

758

751

752

762

740

753

758

754

737

743

748

747

754

754

750

753

754

760

740

756

741

752

747

749

745

757

755

764

756

764

751

759

754

745

752

755

765

762

По выборочным данным, представленным в заданиях №1-30, требуется:

1* Построить интервальный вариационный ряд распределения;

Построение интервального вариационного ряда распределения

Max: 769

Min: 733

R=769-733=36

H= R / 1+3,32 lg n=36/(1+3,32lg100)=4,712

A1= x min - h/2=730,644

B1=A1+h; B2=A2+h

2* Вычислить выборочные характеристики по вариационному ряду:

среднюю арифметическую (x ср.), центральные моменты (мю к, к=1,4), дисперсию (S^2), среднее квадратическое отклонение (S), коэффициенты асимметрии (Ас) и эксцесса (Ек), медиану (Ме), моду (Мо), коэффициент вариации(Vs); Вычисление выборочных характеристик распределения i=(xi- xср)

xср = xi mi/ mi

xср = 751,7539 Вспомогательная таблица ко второму пункту расчетов

Выборочный центральный момент К-го порядка равен

M k =( xi - x)^k mi/mi В нашем примере:

Центр момент 1

0,00

Центр момент 2

63,94

Центр момент 3

-2,85

Центр момент 4

12123,03

Выборочная дисперсия S^2 равна центральному моменту второго порядка:

В нашем примере:

S^2= 63,94

Ввыборочное среднее квадратическое отклонение:

В нашем примере:

S= 7,996

Выборочные коэффициенты асимметрии Ас и эксцессаFkпо формулам

Ac = m3/ S^3;

В нашем примере:

Ас =-0,00557

Ek = m4/ S^4 -3;

В нашем примере:

Ek = -0,03442

Медиана Ме - значение признака x (e), приходящееся на середину ранжированного ряда наблюдений ( n = 2l -1). При четном числе наблюдений( n= 2l) медианой Ме является средняя арифметическая двух значений, расположенных в середине


Интересная статья: Основы написания курсовой работы