Читать реферат по материаловедению: "Состояние и перспективы детонационного напыления покрытий" Страница 10

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

расстоянии 40 – 60 мм, после чего происходит их замедление (рис. 12). При этом укрупнение частиц приводит к уменьшению темпа их разгона и замедления, к снижению значения наибольшей скорости. Это указывает на то, что для обеспечения требуемой скорости удара частиц, необходимо разогнать их в плазменной струе до скорости не менее 25 – 40 м/с. Рассмотренные тепловые и гидродинамические особенности процессов контактного взаимодействия напыляемых частиц с основой показывают, что главными факторами, определяющими прочность сцепления при образовании покрытия, являются:

- температура контакта Тк частицы и основы в зоне контакта их жидкой и твердой фаз;

- продолжительность контакта τо;

- давление контакта Р, приложенное к фазам, взаимодействующим в контактной зоне.

Так как диаметр площади контакта близок к диаметру частицы и к диаметру химического взаимодействия, то значения Тк и Рн остаются постоянными в течение времени удара то, соответствующего времени кристаллизации. Поэтому считается, что химико-физическое взаимодействие материалов частицы и основы протекает в условиях, близких к изобарно-изотермическим, которые создаются самими процессами деформации и кристаллизации частиц.

Формирование покрытия при напылении происходит за счет наслоения частиц на поверхность основы и в дальнейшем друг на друга. Поэтому большое влияние на строение и качество покрытия оказывает не только взаимодействие частиц с основой, но и частиц между собой. 1.3. Физико-химические основы детонационного напыления

Рассмотрена взаимосвязь между скоростью и температурой напыляемых час­тиц и соотношением между их кинетической и тепловой энергией, позволяющая учитывать относительный вклад этих частиц в энергетику формирования газотер­мических покрытий.

Практика газотермнческого нанесения покрытий и специальные экспе­рименты показывают, что прочность сцепления получаемых покрытий оп­ределяется не только контактной температурой па границе раздела соударяющихся частиц с подложкой и временем их взаимодействия, но также и скоростью соударения частиц с подложкой. Однако полного понимания природы влияния и вклада скорости напыляемых частиц в обра­зование прочного сцепления между частицей и подложкой нет.

Предложено для оценки влияния скорости частиц ввести в знаменатель показателя экспоненты известного уравнения, описываю­щего скорость топохимической реакции первого порядка, имеющей место при образовании сцепления между частицей и подложкой, значение кинетической энергии частицы mν02/2. При этом сопоставляют ее с тепловой энергией частиц, определяя последнюю как RT, где R – универ­сальная газовая постоянная, а Т – абсолютная температура частицы.

Полная энергия напыляемой частицы, включая тепловую и кинетиче­скую, определяется выражением

(1.22)

где Ept – тепловая энергия частицы, Epk – кинетическая энергия частицы, m – масса частицы, cр(Тр) — функциональная зависимость удельной теп­лоемкости частицы от ее температуры Тр, L — теплота плавления материа­ла частицы, νp – скорость частицы. При температуре частиц ниже точки плавления (Tр < tm) l=0.

Из этого выражения легко получить зависимость между скоростью и температурой напыляемых частиц, при которой обеспечивается равенство между тепловой и


Интересная статья: Быстрое написание курсовой работы